Search Results

You are looking at 101 - 110 of 2,170 items for :

Clear All
Restricted access

Mark L. Latash, Jae Kun Shim, Fan Gao and Vladimir M. Zatsiorsky

We review a series of studies that show stabilization of the moment of a couple produced by a set of digits in many maximal and submaximal accurate force production tasks that have no requirements for the moment. In particular, an unusual and novel multi-digit force production task shows stabilization of the total moment while the total force requires extensive practice to be stabilized. Similar results were obtained in persons with Down syndrome during easier tasks. During prehension, changes in digit forces and coordinates of their points of application suggest the presence of two multi-digit synergies whose purpose is to assure a certain grip force and a certain total moment, respectively. Elderly persons show impaired production of both maximal and submaximal moments that goes beyond their documented loss of muscle force. We conclude that moment production (keeping rotational equilibrium) is a central constraint in a variety of multi-digit tasks that has received little attention. Analysis of digit interaction for moment production during handwriting could signify a major step towards understanding the control of this action.

Restricted access

AmirAli Jafarnezhadgero, Morteza Madadi-Shad, Christopher McCrum and Kiros Karamanidis

Human lower limbs contribute to locomotion in multiple ways; acting as springs, as force absorbing dampers, or as actuators ( Brown, O’Donovan, Hasselquist, Corner, & Schiffman, 2016 ; Raynor, Yi, Abernethy, & Jong, 2002 ). The progression of ground reaction forces (GRF) through the lower limbs

Restricted access

Matt S. Stock and Brennan J. Thompson

We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

Restricted access

Gregory W. Heath, Ross C. Brownson, Judy Kruger, Rebecca Miles, Kenneth E. Powell, Leigh T. Ramsey and the Task Force on Community Preventive Services

Background:

Although a number of environmental and policy interventions to promote physical activity are being widely used, there is sparse systematic information on the most effective approaches to guide population-wide interventions.

Methods:

We reviewed studies that addressed the following environmental and policy strategies to promote physical activity: community-scale urban design and land use policies and practices to increase physical activity; street-scale urban design and land use policies to increase physical activity; and transportation and travel policies and practices. These systematic reviews were based on the methods of the independent Task Force on Community Preventive Services. Exposure variables were classified according to the types of infrastructures/policies present in each study. Measures of physical activity behavior were used to assess effectiveness.

Results:

Two interventions were effective in promoting physical activity (community-scale and street-scale urban design and land use policies and practices). Additional information about applicability, other effects, and barriers to implementation are provided for these interventions. Evidence is insufficient to assess transportation policy and practices to promote physical activity.

Conclusions:

Because community- and street-scale urban design and land-use policies and practices met the Community Guide criteria for being effective physical activity interventions, implementing these policies and practices at the community-level should be a priority of public health practitioners and community decision makers.

Restricted access

Peter F. Vint and Richard N. Hinrichs

Isometric knee extension force and average integrated EMG of the vastus lateralis muscle were obtained from 27 healthy subjects using a maximum effort, ramp and hold protocol. In each of the 125 total trials mat were included in the analysis, a 2-s plateau region was extracted and divided into two adjacent 1000-ms bins. Variability and reliability of bin-to-bin measurements of force and EMG were then evaluated across 14 different integration intervals ranging from 10 to 1000 ms. Statistical analyses of bin-to-bin variability measures demonstrated that integration intervals of 250 ms and longer significantly reduced variability and improved reliability of average integrated EMG values during maximum effort isometric exertions. Bin-to-bin EMG reliability increased from .728 at 10 ms to .991 at 1000 ms. Force parameters appeared less sensitive to changes in length of the integration interval. It was suggested that longer intervals might also improve the validity of the EMG-force relationship during maximum effort isometric exertions by reducing problems associated with electromechanical delay.

Restricted access

Matthew Brodie, Alan Walmsley and Wyatt Page

A fusion integration algorithm is used to estimate the one-dimensional center of mass (COM) trajectory from force platform data. The resulting COM trajectory combines the best attributes of several established algorithms used to estimate the COM trajectory, and it appears to have the advantage of being robust, accurate, continuous in its higher derivatives, and fast to obtain. In current research projects, variations of the fusion integration algorithm have been adapted by the authors for the analysis of postural balance and the sensing of limb orientations with inertial measurement units.

Restricted access

Kazunori Nosaka and Priscilla M. Clarkson

This study was done to determine whether eccentric exercise that causes muscle damage will produce an increase in plasma levels of zinc. Changes in total plasma zinc concentration (Zn) were examined following an eccentric and concentric exercise of the forearm flexors. Eight female subjects performed 24 maximal concentric actions (CON) with one arm and 10-14 days later performed 24 maximal eccentric actions (ECC) with the other arm. Maximal isometric force, elbow joint angles at a relaxed (RANG) and flexed position (FANG), muscle soreness, and plasma creatine kinase activity (CK) were measured as indicators of muscle damage. Zn levels were determined at the same time as CK. Maximal isometric force, RANG, FANG, and muscle soreness showed large changes after ECC but little if any change after CON. CK increased significantly after ECC but did not change after CON. Neither ECC nor CON showed significant changes in Zn following exercise. If: is concluded that exercise-induced muscle damage does not appear to produce an increase in plasma zinc levels.

Restricted access

Daniel Feeney, Steven J. Stanhope, Thomas W. Kaminski, Anthony Machi and Slobodan Jaric

The aims of the current study were to explore the pattern of the force–velocity (F–V) relationship of leg muscles, evaluate the reliability and concurrent validity of the obtained parameters, and explore the load associated changes in the muscle work and power output. Subjects performed maximum vertical countermovement jumps with a vest ranging 0–40% of their body mass. The ground reaction force and leg joint kinematics and kinetics were recorded. The data revealed a strong and approximately linear F–V relationship (individual correlation coefficients ranged from 0.78–0.93). The relationship slopes, F- and V-intercepts, and the calculated power were moderately to highly reliable (0.67 < ICC < 0.91), while the concurrent validity F- and V-intercepts, and power with respect to the directly measured values, was (on average) moderate. Despite that a load increase was associated with a decrease in both the countermovement depth and absolute power, the absolute work done increased, as well as the relative contribution of the knee work. The obtained findings generally suggest that the loaded vertical jumps could not only be developed into a routine method for testing the capacities of leg muscles, but also reveal the mechanisms of adaptation of multijoint movements to different loading conditions.

Restricted access

Antti Mero and Paavo V. Komi

This study was undertaken to compare force-time characteristics, muscle power, and electromyographic (EMG) activities of the leg muscles in maximal sprinting and in selected bounding and jumping exercises. Seven male sprinters performed maximal bounding (MB), maximal stepping (MS), maximal hopping with the right (MHR) and left (MHL) legs, and maximal sprint running (MR). These “horizontal” exercises and running were performed on a force platform. EMG activity was telemetered unilaterally from five leg muscles during each trial. The results indicated significant (p < .001) differences among the studied exercises in velocity, stride length, stride rate, flight time, and contact time. Also, significant differences were noticed in reactive forces (p < .01-.001) and power (p < .01) among the performances, whereas only insignificant differences were observed in EMG patterns. The average resultant forces during the braking and propulsion phases in MS, MHR, and MHL were greater (p < .001) than in MR and MB. Stepping and hopping are cyclic and sprint-specific and may be used as strength exercises for sprinters because of great strength demand.

Restricted access

Philip E. Martin and Gary D. Heise

Archery instructors believe that force distribution (FD) between the hand and bow grip can have a considerable effect on arrow flight, but there is no empirical support for this speculation. This study examined FD on the bow grip in experienced archers and explored the possible relationships between FD, performance, and fatigue. FD was quantified for 15 experienced archers (8 highly skilled [HS] and 7 less skilled [LS]) using 15 unobtrusive force sensors as each archer completed 72 shots. Arrow position relative to the target center, estimated net moments and moment arms about vertical and horizontal axes through the grip, and shot-to-shot variability in the estimated moments and moment arms were computed for three blocks of six shots. Results demonstrated that (a) estimated moments and moment arms were not consistently related to observed vertical or horizontal deviations in arrow position, (b) there were no systematic differences in FD between HS and LS archers, (c) fatigue had no quantifiable effect on FD, and (d) HS archers displayed less shot-to-shot variability in vertical FD than LS archers, but similar variability horizontally. Results did not support the above-noted common belief of archery instructors.