Search Results

You are looking at 101 - 110 of 380 items for :

  • "high-intensity exercise" x
Clear All
Restricted access

Kellie R. Pritchard-Peschek, David G. Jenkins, Mark A. Osborne and Gary J. Slater

The aim of the current study was to investigate the effect of 180 mg of pseudoephedrine (PSE) on cycling time-trial (TT) performance. Six well-trained male cyclists and triathletes (age 33 ± 2 yr, mass 81 ± 8 kg, height 182.0 ± 6.7 cm, VO2max 56.8 ± 6.8 ml ⋅ kg−1 ⋅ min−1; M ± SD) underwent 2 performance trials in which they completed a 25-min variable-intensity (50–90% maximal aerobic power) warm-up, followed by a cycling TT in which they completed a fixed amount of work (7 kJ/kg body mass) in the shortest possible time. Sixty minutes before the start of exercise, they orally ingested 180 mg of PSE or a cornstarch placebo (PLA) in a randomized, crossover, double-blind manner. Venous blood was sampled immediately pre- and postexercise for the analysis of pH plus lactate, glucose, and norepinephrine (NE). PSE improved cycling TT performance by 5.1% (95% CI 0–10%) compared with PLA (28:58.9 ± 4:26.5 and 30:31.7 ± 4:36.7 min, respectively). There was a significant Treatment × Time interaction (p = .04) for NE, with NE increasing during the PSE trial only. Similarly, blood glucose also showed a trend (p = .06) for increased levels postexercise in the PSE trial. The ingestion of 180 mg of PSE 60 min before the onset of high-intensity exercise improved cycling TT performance in well-trained athletes. It is possible that changes in metabolism or an increase in central nervous system stimulation is responsible for the observed ergogenic effect of PSE.

Restricted access

Rob Duffield, Johann Edge, Robert Merrells, Emma Hawke, Matt Barnes, David Simcock and Nicholas Gill

Purpose:

The aim of this study was to determine whether compression garments improve intermittent-sprint performance and aid performance or self-reported recovery from high-intensity efforts on consecutive days.

Methods:

Following familiarization, 14 male rugby players performed two randomized testing conditions (with or without garments) involving consecutive days of a simulated team sport exercise protocol, separated by 24 h of recovery within each condition and 2 weeks between conditions. Each day involved an 80-min high-intensity exercise circuit, with exercise performance determined by repeated 20-m sprints and peak power on a cart dynamometer (single-man scrum machine). Measures of nude mass, heart rate, skin and tympanic temperature, and blood lactate (La) were recorded throughout each day; also, creatine kinase (CK) and muscle soreness were recorded each day and 48 h following exercise.

Results:

No differences (P = .20 to 0.40) were present between conditions on either day of the exercise protocol for repeated 20-m sprint efforts or peak power on a cart dynamometer. Heart rate, tympanic temperature, and body mass did not significantly differ between conditions; however, skin temperature was higher under the compression garments. Although no differences (P = .50) in La or CK were present, participants felt reduced levels of perceived muscle soreness in the ensuing 48 h postexercise when wearing the garments (2.5 ± 1.7 vs 3.5 ± 2.1 for garment and control; P = .01).

Conclusions:

The use of compression garments did not improve or hamper simulated team-sport activity on consecutive days. Despite benefits of reduced self-reported muscle soreness when wearing garments during and following exercise each day, no improvements in performance or recovery were apparent.

Restricted access

Lindsay B. Baker, Lisa E. Heaton, Ryan P. Nuccio and Kimberly W. Stein

Context:

Sports nutrition experts recommend that team-sport athletes participating in intermittent high-intensity exercise for ≥1 hr consume 1–4 g carbohydrate/kg 1–4 hr before, 30–60 g carbohydrate/hr during, and 1–1.2 g carbohydrate/kg/hr and 20–25 g protein as soon as possible after exercise. The study objective was to compare observed vs. recommended macronutrient intake of competitive athletes under free-living conditions.

Methods:

The dietary intake of 29 skill/team-sport athletes (14–19 y; 22 male, 7 female) was observed at a sports training facility by trained registered dietitians for one 24-hr period. Dietitians accompanied subjects to the cafeteria and field/court to record their food and fluid intake during meals and practices/competitions. Other dietary intake within the 24-hr period (e.g., snacks during class) was accounted for by having the subject take a picture of the food/fluid and completing a log.

Results:

For male and female athletes, respectively, the mean ± SD (and percent of athletes meeting recommended) macronutrient intake around exercise was 1.4 ± 0.6 (73%) and 1.4 ± 1.0 (57%) g carbohydrate/kg in the 4 hr before exercise, 21.1 ± 17.2 (18%) and 18.6 ± 13.2 (29%) g carbohydrate/hrr during exercise, 1.4 ± 1.1 (68%) and 0.9 ± 1.0 (43%) g carbohydrate/kg and 45.2 ± 36.9 (73%) and 18.0 ± 21.2 (43%) g protein in the 1 hr after exercise.

Conclusion:

The male athletes’ carbohydrate and protein intake more closely approximated recommendations overall than that of the female athletes. The most common shortfall was carbohydrate intake during exercise, as only 18% of male and 29% of female athletes consumed 30–60 g carbohydrate/hr during practice/competition.

Restricted access

Samuel T. Howe, Phillip M. Bellinger, Matthew W. Driller, Cecilia M. Shing and James W. Fell

Beta-alanine may benefit short-duration, high-intensity exercise performance. The aim of this randomized double-blind placebo-controlled study was to examine the effects of beta-alanine supplementation on aspects of muscular performance in highly trained cyclists. Sixteen highly trained cyclists (mean ± SD; age = 24 ± 7 yr; mass = 70 ± 7kg; VO2max = 67 ± 4ml·kg−1·min–1) supplemented with either beta-alanine (n = 8, 65 mg·kg−1BM) or a placebo (n = 8; dextrose monohydrate) over 4 weeks. Pre- and postsupplementation cyclists performed a 4-minute maximal cycling test to measure average power and 30 reciprocal maximal isokinetic knee contractions at a fixed angular velocity of 180°·sec−1 to measure average power/repetition, total work done (TWD), and fatigue index (%). Blood pH, lactate (La) and bicarbonate (HCO3 -) concentrations were measured preand postisokinetic testing at baseline and following the supplementation period. Beta-alanine supplementation was 44% likely to increase average power output during the 4-minute cycling time trial when compared with the placebo, although this was not statistically significant (p = .25). Isokinetic average power/repetition was significantly increased post beta-alanine supplementation compared with placebo (beta-alanine: 6.8 ± 9.9W, placebo: –4.3 ± 9.5 W, p = .04, 85% likely benefit), while fatigue index was significantly reduced (p = .03, 95% likely benefit). TWD was 89% likely to be improved following beta-alanine supplementation; however, this was not statistically significant (p = .09). There were no significant differences in blood pH, lactate, and HCO3 between groups (p > .05). Four weeks of beta-alanine supplementation resulted in worthwhile changes in time-trial performance and short-duration muscular force production in highly trained cyclists.

Restricted access

Hee-Tae Roh, Su-Youn Cho, Hyung-Gi Yoon and Wi-Young So

We investigated the effects of aerobic exercise intensity on oxidative–nitrosative stress, neurotrophic factor expression, and blood–brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative–nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p < .05). At 60MAE, ROS concentration was higher following HI (2.5 ± 1.2 mM) than after LI (1.5 ± 0.5 mM) and MI (1.4 ± 0.3 mM) conditions (p < .05). Plasma NO IAE increased significantly after MI and HI exercise (p < .05). Serum BDNF, NGF, and S-100b levels were significantly higher IAE following MI and HI exercise (p < .05). BDNF and S-100b were higher IAE following MI (29.6 ± 3.4 ng/mL and 87.1 ± 22.8 ng/L, respectively) and HI (31.4 ± 3.8 ng/mL and 100.6 ± 21.2 ng/L, respectively) than following LI (26.5 ± 3.0 ng/mL and 64.8 ± 19.2 ng/L, respectively) exercise (p < .05). 60MAE, S-100b was higher following HI (71.1 ± 14.5 ng/L) than LI (56.2 ± 14.7 ng/L) exercise (p < .05). NSE levels were not significantly different among all intensity conditions and time points (p > .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.

Restricted access

Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas and Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.

Restricted access

Tanja Oosthuyse, Matthew Carstens and Aletta M.E. Millen

Certain commercial carbohydrate replacement products include slowly absorbed carbohydrates such as isomaltulose. Few studies have investigated the metabolic effects of ingesting isomaltulose during exercise and none have evaluated exercise performance and gastrointestinal comfort. Nine male cyclists participated postprandially during three trials of 2-h steady-state (S-S) exercise (60% W max) followed by a 16 km time trial (TT) while ingesting 63 g∙h-1 of either, 0.8:1 fructose: maltodextrin (F:M) or isomaltulose (ISO) or placebo-flavored water (PL). Data were analyzed by magnitude-based inferences. During S-S exercise, ISO and PL similarly increased plasma nonesterified fatty acid (NEFA) concentration (mean change ISO versus F:M: 0.18, 90%CI ± 0.21 mmol∙L-1, 88% likelihood) and fat oxidation (10, 90%CI ± 9 g, 89% likelihood) while decreasing carbohydrate oxidation (-36, 90%CI ± 30.2 g, 91% likelihood) compared with F:M, despite equal elevations in blood glucose concentration with ISO and F:M. Rating of stomach cramps and bloating increased progressively with ISO (rating: 0-90 min S-S, weak; 120 min S-S, moderate; TT, strong) compared with F:M and PL (0-120 min S-S and TT, very weak). TT performance was substantially slower with ISO (mean change: 1.5, 90%CI ± 1.4 min, 94% likely harmful) compared with F:M. The metabolic response of ISO ingestion during moderate exercise to increase NEFA availability and fat oxidation despite elevating blood glucose concentration is anomalous for a carbohydrate supplement. However, ingesting isomaltulose at a continuous high frequency to meet the recommended carbohydrate replacement dose, results in severe gastrointestinal symptoms during prolonged or high intensity exercise and negatively affects exercise performance compared with fructose-maltodextrin supplementation.

Restricted access

Andrew E. Kilding, Claire Overton and Jonathan Gleave

Purpose:

To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.

Method:

Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.

Results:

Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).

Conclusions:

When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.

Restricted access

Martin J. Turner and Alberto P. Avolio

International guidelines suggest limiting sodium intake to 86–100 mmol/day, but average intake exceeds 150 mmol/day. Participants in physical activities are, however, advised to increase sodium intake before, during and after exercise to ensure euhydration, replace sodium lost in sweat, speed rehydration and maintain performance. A similar range of health benefits is attributable to exercise and to reduction in sodium intake, including reductions in blood pressure (BP) and the increase of BP with age, reduced risk of stroke and other cardiovascular diseases, and reduced risk of osteoporosis and dementia. Sweat typically contains 40–60 mmol/L of sodium, leading to approximately 20–90 mmol of sodium lost in one exercise session with sweat rates of 0.5–1.5 L/h. Reductions in sodium intake of 20–90 mmol/day have been associated with substantial health benefits. Homeostatic systems reduce sweat sodium as low as 3–10 mmol/L to prevent excessive sodium loss. “Salty sweaters” may be individuals with high sodium intake who perpetuate their “salty sweat” condition by continual replacement of sodium excreted in sweat. Studies of prolonged high intensity exercise in hot environments suggest that sodium supplementation is not necessary to prevent hyponatremia during exercise lasting up to 6 hr. We examine the novel hypothesis that sodium excreted in sweat during physical activity offsets a significant fraction of excess dietary sodium, and hence may contribute part of the health benefits of exercise. Replacing sodium lost in sweat during exercise may improve physical performance, but may attenuate the long-term health benefits of exercise.

Restricted access

Marcus J. Callahan, Evelyn B. Parr, John A. Hawley and Louise M. Burke

When ingested alone, beetroot juice and sodium bicarbonate are ergogenic for high-intensity exercise performance. This study sought to determine the independent and combined effects of these supplements. Eight endurance trained (VO2max 65 mL·kg·min-1) male cyclists completed four × 4-km time trials (TT) in a doubleblind Latin square design supplementing with beetroot crystals (BC) for 3 days (15 g·day-1 + 15 g 1 h before TT, containing 300 mg nitrate per 15 g), bicarbonate (Bi 0.3 g·kg-1 body mass [BM] in 5 doses every 15 min from 2.5 h before TT); BC+Bi or placebo (PLA). Subjects completed TTs on a Velotron cycle ergometer under standardized laboratory conditions. Plasma nitrite concentrations were significantly elevated only in the BC+Bi trial before the TT (1520 ± 786 nmol·L-1) compared with baseline (665 ± 535 nmol·L-1, p = .02) and the Bi and PLA conditions (Bi: 593 ± 203 nmol·L-1, p < .01; PLA: 543 ± 369 nmol·L-1, p < .01). Plasma nitrite concentrations were not elevated in the BC trial before the TT (1102 ± 218 nmol·L-1) compared with baseline (975 ± 607 nmol·L-1, p > .05). Blood bicarbonate concentrations were increased in the BC+Bi and Bi trials before the TT (BC+Bi: 30.9 ± 2.8 mmol·L-1; Bi: 31.7 ± 1.1 mmol·L-1). There were no differences in mean power output (386–394 W) or the time taken to complete the TT (335.8–338.1 s) between any conditions. Under the conditions of this study, supplementation was not ergogenic for 4-km TT performance.