Search Results

You are looking at 101 - 110 of 370 items for :

  • "locomotor" x
Clear All
Restricted access

Jebb G. Remelius, Joseph Hamill, Jane Kent-Braun and Richard E.A. Van Emmerik

Individuals with multiple sclerosis (MS) often have poor balance control that is especially apparent during dynamic tasks such as gait initiation (GI). The purpose of this study was to investigate how balance symptoms due to MS alter spatiotemporal variables, coordination, and temporal margins within the stability boundary during gait initiation. Twelve women with MS (Expanded Disability Status Scale [EDSS] mean = 4.0, SD = 1.4) and 12 women without MS (control group) initiated gait at their preferred speed. MS participants attained a slower anterior velocity because of smaller anterior center of mass displacements and took longer to complete the initiation of gait than the control group. MS participants exhibited a smaller posterior shift in center of pressure during GI and stepped with a longer dual support time than the control group. However, these changes may be due to differences in initiation velocity. Relative timing analysis showed invariance in postural and locomotor phases of gait initiation between groups. The MS group showed different coordination between anterior-posterior and medio-lateral center of pressure components while increasing temporal margins to the posterior and lateral stability boundaries in comparison with the control group. Overall, during gait initiation at their preferred speed the MS participants adopted a functional strategy that produces lower speed and reduced proximity to the stability boundaries prior to stepping.

Restricted access

Amelia Mays Woods, Kim Graber and David Daum

The benefits of recess can be reaped by all students regardless of socioeconomic status, race, or gender and at relatively little cost. The purpose of this study was to examine physical activity (PA) variables related to the recess PA patterns of third and fourth grade children and the social preferences and individuals influencing their PA (friends and parents). Data were collected on students (N = 115) utilizing the System of Observing Children’s Activity and Relationships during Play (SOCARP) instrument. In addition, each child was interviewed during the recess period in which SOCARP was completed. Results found that boys spent significantly more time being very active (t (95.64) = 3.252, d = .62, p < .008) than girls and preferred sport activities (t = (73.62) 5.64, d = 1.14, p < .0125) in large groups (t (69.34) = 4.036, d = .83, p < .0125). Meanwhile, girls preferred locomotor activities (t (113) = 3.19, d = .60, p < .0125), sedentary activities (t (113) = 2.829, d = .53, p < .0125) and smaller groups (t (112.63) = 4.259, d = .79, p < .0125). All 115 participants indicated that they wanted to spend time with their friends during recess.

Restricted access

Peggy M. Roswal, Claudine Sherrill and Glenn M. Roswal

This study compared the effectiveness of data based and creative dance pedagogies in relation to motor skill performance and self-concept of mentally retarded students. Subjects (N=35) were moderately mentally retarded males and females, ages 11 to 16 years, in special education classes. Their mean age was 12.88 years in the data based group and 13.47 years in the creative dance group. Excluding testing, the study lasted 8 weeks. Each group received 40 lessons of 30 minutes each. Data based pedagogy was based on the work of Dunn, Morehouse, and Dalke (1979), and creative dance pedagogy was based primarily on the work of Riordan (Fitt & Riordan, 1980). Pretest and posttest data were collected through administration of the Data Based Dance Skills Placement Test, selected subtests of the Cratty Six-Category Gross Motor Test, and the Martinek-Zaichkowsky Self-Concept Scale. Multivariate analysis of covariance revealed no difference between pedagogies. The group means indicated improvement in dance skill performance but not in self-concept or body perception, balance, and gross and locomotor agility.

Restricted access

Gail M. Dummer, John L. Haubenstricker and David A. Stewart

The Test of Gross Motor Development (TGMD) was used to assess the fundamental motor skills of 91 girls and 110 boys aged 4 to 18 years who attended two schools for students who are deaf. Average hearing loss, determined by better ear average, was 96.94 dB (SD = 14.40 dB). Modifications to the procedures for administering the TGMD included visual demonstrations and the use of signing to communicate instructions. The raw score means of subjects aged 4–10 years who were deaf were lower than those of the TGMD standardization sample of same-aged children who could hear at six of seven age levels on both the object-control and locomotor subscales. However, there were relatively small differences in the mean scores of the two groups. Subjects with mature movement patterns for the throw, kick, jump, and run performed better on quantitative tests for those skills than subjects with immature patterns. Typical age and gender patterns of skill acquisition were revealed for both the qualitative and quantitative aspects of the fundamental motor skills examined.

Restricted access

Judith Jiménez, Maria Morera, Walter Salazar and Carl Gabbard

Purpose:

Motor skill competence has been associated with physical activity level, fitness, and other relevant health-related characteristics. Recent research has focused on understanding these relationships in children and adolescents, but little is known about subsequent years. The aim of this study was to examine the relationship between fundamental motor skill (FMS) ability and body mass index (BMI) in young adults.

Method:

Participants, 40 men and 40 women (M age = 19.25 yr, SD = 2.48), were assessed for BMI and motor competence with 10 fundamental motor skills (FMSs) using the Test for Fundamental Motor Skills in Adults (TFMSA).

Results:

BMI was negatively associated with total motor ability (r = –.257; p = .02) and object control skills (r = –.251; p = .02); the relationship with locomotor skills was marginally insignificant (r = –.204; p = .07). In regard to individual skills, a significant negative association was found for running, jumping, striking, and kicking (ps < .05). Multiple regression analysis indicated that BMI and gender predicted 42% of the variance in total FMS score; gender was the only significant predictor.

Conclusion:

Overall, these preliminary findings suggest that young adults with higher FMS ability are more likely to have lower BMI scores.

Restricted access

Anthony D. Okely, Michael L. Booth and John W. Patterson

This study investigated a possible relationship between cardiorespiratory endurance and fundamental movement skill proficiency among adolescents. Locomotor (run and jump) and object-control (catch, throw, kick, and strike) skills and cardiorespiratory endurance, indirectly measured using the Multistage Fitness Test (MFT) or PACER, were assessed in 2,026 boys and girls in Grade 8 (mean age = 13.3 years) and Grade 10 (mean age = 15.3 years), who were part of a randomly selected sample who agreed to participate in the New South Wales Schools Fitness and Physical Activity Survey, 1997. Boys had higher levels of cardiorespiratory endurance and were more competent than girls on 5 out of 6 skills. Grade 10 students were better on all skills and were aerobically fitter than Grade 8 students. All six skills and a skills index were related to the number of laps completed on the MFT. The six skills explained 20% and 26% of the variance in the number of laps completed on the MFT for Grade 8 and Grade 10 girls, respectively, and 12% and 17% for Grade 8 and Grade 10 boys, respectively. This finding can be interpreted as evidence of a relationship between cardiorespiratory endurance and fundamental movement skills among adolescents. Further studies are recommended to determine if improved movement skills in adolescents can promote cardiorespiratory endurance.

Restricted access

Samuel W. Logan, E. Kipling Webster, Nancy Getchell, Karin A. Pfeiffer and Leah E. Robinson

The purpose of this review is to synthesize the evidence of the relationship between fundamental motor skills (FMS) competence and physical activity by qualitatively describing results from 13 studies that met rigorous inclusion criteria. Inclusion criteria: (a) published in a peer-review journal, (b) participants were between the ages of 3–18, (c) participants were typically developing, (d) FMS was measured by a process-oriented assessment, (e) assessed physical activity, (f) related FMS and physical activity through statistical procedures, and (g) printed in English. Databases were searched for relevant articles using key terms related to FMS and physical activity. Evidence suggested low to moderate relationships between FMS competence and physical activity in early childhood (r = .16 to .48; R 2 = 3–23%, 4 studies), low to high relationships in middle to late childhood (r = .24 to .55; R 2 = 6–30%, 7 studies), and low to moderate relationships in adolescence (r = .14 to .35; R 2 = 2–12.3%, 2 studies). Across ages, object control skills and locomotor skills were more strongly related to physical activity for boys and girls, respectively. Future research should emphasize experimental and longitudinal research designs to provide further understanding of the relationship between FMS competence and physical activity.

Restricted access

Gisela Kobberling, Louis W. Jankowski and Luc Leger

The oxygen consumption (VO2) of 30 (10 females, 20 males) legally blind adolescents and their sighted controls were compared for treadmill walking (3 mph, 4.8 km/h) and running (6 mph, 9.6 km/h). The VO2 of the visually impaired subjects averaged 24.4% and 10.8% higher than those of their same-sex age-matched controls, and 42.8% and 11.2% higher than the American College of Sports Medicine (ACSM) norms for walking (p<.01) and running (p<.05), respectively. The normal association between aerobic capacity and locomotor energy costs was evident among the sighted controls (r= .44, p<.05) but insignificant (r=.35, p>.05) for the visually impaired subjects. The energy costs of both walking and running were highest among the totally blind subjects, and decreased toward normal as a function of residual vision among the legally blind subjects. The energy costs of walking and running for blind adolescents are higher than both those of sighted controls and the ACSM norm values.

Open access

James J. Malone, Ric Lovell, Matthew C. Varley and Aaron J. Coutts

Athlete-tracking devices that include global positioning system (GPS) and microelectrical mechanical system (MEMS) components are now commonplace in sport research and practice. These devices provide large amounts of data that are used to inform decision making on athlete training and performance. However, the data obtained from these devices are often provided without clear explanation of how these metrics are obtained. At present, there is no clear consensus regarding how these data should be handled and reported in a sport context. Therefore, the aim of this review was to examine the factors that affect the data produced by these athlete-tracking devices and to provide guidelines for collecting, processing, and reporting of data. Many factors including device sampling rate, positioning and fitting of devices, satellite signal, and data-filtering methods can affect the measures obtained from GPS and MEMS devices. Therefore researchers are encouraged to report device brand/model, sampling frequency, number of satellites, horizontal dilution of precision, and software/firmware versions in any published research. In addition, details of inclusion/exclusion criteria for data obtained from these devices are also recommended. Considerations for the application of speed zones to evaluate the magnitude and distribution of different locomotor activities recorded by GPS are also presented, alongside recommendations for both industry practice and future research directions. Through a standard approach to data collection and procedure reporting, researchers and practitioners will be able to make more confident comparisons from their data, which will improve the understanding and impact these devices can have on athlete performance.

Restricted access

Mohamed Ali Nabli, Nidhal Ben Abdelkrim, Imed Jabri, Tahar Batikh, Carlo Castagna and Karim Chamari

Purpose:

To examine the relation between game performance, physiological responses, and field-test results in Tunisian basketball referees.

Methods:

Computerized time–motion analysis, heart rate (HR), and blood lactate concentration [La] were measured in 15 referees during 8 competitive games (under-19-y-old Tunisian league). Referees also performed a repeated-sprint test (RSA), Yo-Yo Intermittent Recovery Test level 1 (YYIRTL1), agility T-test, and 30-m sprint with 10-m lap time. Computerized video analysis determined the time spent in 5 locomotor activities (standing, walking, jogging, running, and sprint), then grouped in high-, moderate-, and low-intensity activities (HIAs, MIAs, and LIAs, respectively).

Results:

YYIRTL1 performance correlated with (1) total distance covered during the 4th quarter (r = .52, P = .04) and (2) distance covered in LIA during all game periods (P < .05). Both distance covered and time spent in MIA during the 1st quarter were negatively correlated with the YYIRTL1 performance (r = –.53, P = .035; r = –.67, P = .004, respectively). A negative correlation was found between distance covered at HIA during the 2nd half (3rd quarter + 4th quarter) and fatigue index of the RSA test (r = –.54, P = .029). Mean HR (expressed as %HRpeak) during all game periods was correlated with YYIRTL1 performance (.61 ≤ r < .67, P < .01).

Conclusions:

This study showed that (1) the YYIRTL1 performance is a moderate predictor of game physical performance in U-19 basketball referees and (2) referees’ RSA correlates with the amount of HIA performed during the 2nd half, which represents the ability to keep up with play.