Search Results

You are looking at 101 - 110 of 3,137 items for :

Clear All
Restricted access

Kristian M. O’Connor and Joseph Hamill

The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were colected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (α = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.

Restricted access

Loren Z.F. Chiu and George J. Salem

Potentiation has been reported in power tasks immediately following a strength stimulus; however, only whole-body performance has been assessed. To determine the acute effects of weightlifting on vertical jump joint kinetics, performance was assessed before, during, and after snatch pull exercise in male athletes. Jumping was assessed using 3D motion analysis and inverse dynamics. Jump height was enhanced at the midpoint (5.77%; p = .001) and end (5.90%; p < .001) of the exercise session, indicating a greater powergenerating ability. At the midpoint, knee extensor net joint work was increased (p = .05) and associated with increased jump height (r = .57; p = .02). Following exercise, ankle plantar flexor net joint work was increased (p = .02) and associated with increased jump height (r = .67; p = .006). Snatch pull exercise elicited acute enhancements in vertical jump performance. At the midpoint of the exercise session, greater work at the knee joint contributed to enhanced performance. At the end of the exercise session, greater work at the ankle contributed to enhanced performance. Consequently, potentiation is not elicited uniformly across joints during multijoint exercise.

Restricted access

Samantha G. Fawkner and Neil Armstrong

The purpose of this study was to examine methods of assessing Critical Power (CP) with children. Eight boys and 9 girls (10.3 – 0.4 yrs) completed 3 cycle tests in one day, each at a different constant power output predicted to induce fatigue in 2 to 15 min. Time to exhaustion was recorded, and order of the tests was randomized, with 3 hours recovery between tests. The children repeated these tests and 2 additional tests with at least 24 hr recovery between each test. CP was determined using least squares linear regression analysis of the power — t−1 relationship, for the single day (CP1), the 5 tests from different days (CP2), and the repeated 3 tests from different days (CP3). The 95% limits of agreement (range of percentage differences) were −15.4 to 13.1% (CP1 v CP2), −16.8 to 13.5% (CP1 v CP3), and −8.4 to 6.7% (CP2 v CP3). CP is a robust measure even when only 3 tests are completed in a single day and may be used to provide a simple and useful parameter of exercise intensity for constant load exercise with children.

Restricted access

Erin Calaine Inglis, Danilo Iannetta, Louis Passfield and Juan M. Murias

, the boundary separating tolerable and nontolerable exercise) and is often identified by measures including the maximal lactate steady state (MLSS) or critical power (CP). 3 Although the accuracy for determining this intensity is best obtained in a laboratory setting, this is not always feasible due to cost

Restricted access

Anna Bjerkefors, Johanna S. Rosén, Olga Tarassova and Anton Arndt

to an increase in pelvis and trunk rotation and a higher power output. 1 Kayaking performed by people with physical impairment is called para-kayak and was introduced as an international competitive sport in 2009 and debuted in the Paralympic Games in 2016. In Paralympic sports, athletes compete in

Restricted access

Yiannis Michailidis, Alexandros Tabouris and Thomas Metaxas

discriminate between a successful and an unsuccessful performance. Therefore, power training is very important in soccer. Plyometric training (PT) is an effective way of improving the rate of both force development and sprint performance. 5 It involves a variety of jumps and actions that are characterized by

Restricted access

David Michael Morris and Rebecca Susan Shafer

The authors sought to compare power output at blood lactate threshold, maximal lactate steady state, and pH threshold with the average power output during a simulated 20-km time trial assessed during cycle ergometry. Participants (N = 13) were trained male and female cyclists and triathletes, all permanent residents at moderate altitude (1,525–2,225 m). Testing was performed at 1,525 or 1,860 m altitude. Power outputs were determined during a simulated 20-km time trial (PTT), at blood pH threshold (PpHT), at maximal lactate steady state (PMLSS), and at blood lactate threshold determined by 2 methods: the highest power output that did not result in consecutive and continued increases in blood lactate concentrations from exercising baseline (PLT) and the highest power output that did not result in consecutive and continued increases of ≥1 mmol/L in blood lactate concentrations from exercising baseline (PLT1). PLT, PLT1, and PMLSS were all significantly lower than PpHT (p < .05) and PTT (p < .05). No significant difference was observed between PpHT and PTT (p > .05). Significant correlations were observed between each of the metabolic variables, PLT, PLT1, PMLSS, and PpHT, compared with PTT (p < .05). The authors conclude that, of the 4 metabolic variables, only PpHT offered an accurate reflection of PTT.

Restricted access

João Ribeiro, Luís Teixeira, Rui Lemos, Anderson S. Teixeira, Vitor Moreira, Pedro Silva and Fábio Y. Nakamura

a growing interest in developing training programs that specifically enhance performance during these powerful activities. Several strength–power training strategies result in significant soccer-specific physical performance changes, typically assessed by vertical jump, straight-line sprint, and

Restricted access

Mayur K. Ranchordas, George King, Mitchell Russell, Anthony Lynn and Mark Russell

well supported in athletic populations as numerous studies have shown that caffeine can enhance performance of endurance ( Ganio et al., 2009 ); strength ( Timmins & Saunders, 2014 ); power ( Del Coso et al., 2012 ); agility ( Jordan et al., 2014 ); skill ( Russell & Kingsley, 2014 ); and reaction time

Restricted access

João Ribeiro, Argyris G. Toubekis, Pedro Figueiredo, Kelly de Jesus, Huub M. Toussaint, Francisco Alves, João P. Vilas-Boas and Ricardo J. Fernandes


To conduct a biophysical analysis of the factors associated with front-crawl performance at moderate and severe swimming intensities, represented by anaerobic-threshold (vAnT) and maximal-oxygen-uptake (vV̇O2max) velocities.


Ten high-level swimmers performed 2 intermittent incremental tests of 7 × 200 and 12 × 25 m (through a system of underwater push-off pads) to assess vAnT, and vV̇O2max, and power output. The 1st protocol was videotaped (3D reconstruction) for kinematic analysis to assess stroke frequency (SF), stroke length (SL), propelling efficiency (η P), and index of coordination (IdC). V̇O2 was measured and capillary blood samples (lactate concentrations) were collected, enabling computation of metabolic power. The 2nd protocol allowed calculating mechanical power and performance efficiency from the ratio of mechanical to metabolic power.


Neither vAnT nor vV̇O2max was explained by SF (0.56 ± 0.06 vs 0.68 ± 0.06 Hz), SL (2.29 ± 0.21 vs 2.06 ± 0.20 m), η P (0.38 ± 0.02 vs 0.36± 0.03), IdC (–12.14 ± 5.24 vs –9.61 ± 5.49), or metabolic-power (1063.00 ± 122.90 vs 1338.18 ± 127.40 W) variability. vV̇O2max was explained by power to overcome drag (r = .77, P ≤ .05) and η P (r = .72, P ≤ .05), in contrast with the nonassociation between these parameters and vAnT; both velocities were well related (r = .62, P ≤ .05).


The biomechanical parameters, coordination, and metabolic power seemed not to be performance discriminative at either intensity. However, the increase in power to overcome drag, for the less metabolic input, should be the focus of any intervention that aims to improve performance at severe swimming intensity. This is also true for moderate intensities, as vAnT and vV˙O2max are proportional to each other.