Search Results

You are looking at 101 - 110 of 1,600 items for :

Clear All
Restricted access

Justin M. Stanek

Clinical Scenario:

The popularity of compression socks has increased substantially among athletes, particularly those participating in endurance events such as running and triathlon. Companies are increasingly marketing compression stockings to runners, triathletes, and other endurance athletes for the benefits of improved performance and/or decreased recovery time. Originally developed for the treatment of deep-vein thrombosis, compression socks are now marketed as a tool to improve venous return, thus believed to improve both performance and recovery in athletes. The use of compression socks during training aims to help the skeletal-muscle pump, increase deep venous velocity, and/or decrease blood pooling in the calf veins and alleviate delayed-onset muscle soreness. The scenario is a 28-y-old recreational triathlete seeking your advice while training for her first half-Ironman. She occasionally complains of tightness in the calves both during and after running. She wants your opinion on the effectiveness of using compression socks to help her performance and recovery.

Focused Clinical Question:

What is the effectiveness of using graduated compression socks for improving athletic performance and decreasing recovery time in healthy endurance athletes?

Restricted access

Dylan Thompson, Clyde Williams, Stephen J. McGregor, Ceri W. Nicholas, Frank McArdle, Malcolm J. Jackson and Jonathan R. Powell

The aim of the present study was to investigate whether 2 weeks of vitamin C supplementation affects recovery from an unaccustomed bout of exercise. Sixteen male subjects were allocated to either a placebo (P; n = 8) or vitamin C group (VC; n = 8). The VC group consumed 200 mg of ascorbic acid twice a day, whereas the P group consumed identical capsules containing 200 mg of lactose. Subjects performed a prolonged (90-min) intermittent shuttle-running test 14 days after supplementation began. Post-exercise serum creatine kinase activities and myoglobin concentrations were unaffected by supplementation. However, vitamin C supplementation had modest beneficial effects on muscle soreness, muscle function, and plasma concentrations of malondialdehyde. Furthermore, although plasma interleukin-6 increased immediately after exercise in both groups, values in the VC group were lower than in the P group 2 hours after exercise (p < .05). These results suggest that prolonged vitamin C supplementation has some modest beneficial effects on recovery from unaccustomed exercise.

Restricted access

Daniel J. Davies, Kenneth S. Graham and Chin Moi Chow

Purpose:

The use of daytime napping as a recovery tool following exercise is virtually unexplored. The objective of this study was to assess the quality of daytime nap sleep following endurance training in an athletic population, and to appraise the optimal circadian timing of the nap and the time interval between training and the nap.

Methods:

Six physically trained male subjects (22.5 ± 2.4 y) performed four separate standardized 90-min endurance training sessions followed by a 90-min daytime nap either 1 or 2 h after training (time interval), commencing at either 10:30 or 11:30 (circadian timing). During the nap, sleep was monitored using polysomnography. Subjective measurements of sleep quality, alertness and preparedness to train following a nap were recorded using a visual analog scale.

Results:

The duration of slow wave sleep (SWS) was significantly greater during the 11:30 naps (13.7 ± 9.0 min) compared with the 10:30 naps (6.9 ± 8.8 min) (P = .049). There was no significant difference in SWS duration between a 1-h (10.6 ± 10.2 min) or 2-h (10.0 ± 9.0 min) time interval between training and the nap (P = .82). No other sleep variables differed significantly according to circadian timing or time interval.

Conclusion:

Recovery naps commenced later in the morning contain more SWS than earlier naps. The data imply that daytime naps have a potential role as a valuable recovery tool following endurance exercise, given the suggested energy restorative functions of SWS.

Restricted access

Rennae Williams Stowe

This review presents a framework for understanding the role of social support in athletic injury prevention and recovery. The stress-injury model is presented, which is the theoretical basis for many studies on psychosocial factors related to injury in sport. In addition, we discuss the definition of social support, types and sources of social support for the athlete, and strategies supporting others can use to show their support. Finally, using social support as a rehabilitation strategy and gender differences will be presented.

Restricted access

C. Martyn Beaven, Christian Cook, David Gray, Paul Downes, Ian Murphy, Scott Drawer, John R. Ingram, Liam P. Kilduff and Nicholas Gill

Rugby preseason training involves high-volume strength and conditioning training, necessitating effective management of the recovery-stress state to avoid overtraining and maximize adaptive gains.

Purpose:

Compression garments and an electrostimulation device have been proposed to improve recovery by increasing venous blood flow. These devices were assessed using salivary testosterone and cortisol, plasma creatine kinase, and player questionnaires to determine sleep quality, energy level, mood, and enthusiasm.

Methods:

Twenty-five professional rugby players were assigned to 1 of 2 treatments (compression garment or a concurrent combination of electrostimulation and compression) in a crossover design over 2 × 2-wk training blocks.

Results:

Substantial benefits were observed in self-assessed energy levels (effect size [ES] 0.86), and enthusiasm (ES 0.80) as a result of the combined treatment when compared with compression-garment use. The combination treatment had no discernable effect on salivary hormones, with no treatment effect observed. The electrostimulation device did tend to accelerate the return of creatine kinase to baseline levels after 2 preseason rugby games when compared with the compression-garment intervention (ES 0.61; P = .08).

Conclusions:

Electrostimulation elicited psychometric and physiological benefits reflective of an improved recovery-stress state in professional male rugby players when combined with a lower-body compression garment.

Restricted access

Shona L. Halson

An increase in research investigating recovery strategies has occurred alongside the increase in usage of recovery by elite athletes. Because there is inconsistent evidence regarding the benefits of recovery on performance, it is necessary to examine research design to identify possible strategies that enhance performance in different athlete settings. The purpose of this review is to examine available recovery literature specifically related to the time frame between performance assessments to identify considerations for both research design and practical use of recovery techniques.

Restricted access

Ricardo J.S. Costa, Robert Walters, James L.J. Bilzon and Neil P. Walsh

The purpose of the study was to determine the effects of carbohydrate (CHO) intake, with and without protein (PRO), immediately after prolonged strenuous exercise on circulating bacterially stimulated neutrophil degranulation. Twelve male runners completed 3 feeding interventions, 1 week apart, in randomized order after 2 hr of running at 75% VO2max. The feeding interventions included a placebo solution, a CHO solution equal to 1.2 g CHO~/kg body mass (BM), and a CHO-PRO solution equal to 1.2 g CHO/kg BM and 0.4 g PRO/kg BM (CHO+PRO) immediately postexercise. All solutions were flavor and water-volume equivalent (12 ml/kg BM). Circulating leukocyte counts, bacterially stimulated neutrophil degranulation, plasma insulin, and cortisol were determined from blood samples collected preexercise, immediately postexercise, and every 30 min until 180 min postexercise. The immediate postexercise circulating leukocytosis, neutrophilia, and lymphocytosis (p < .01 vs. preexercise) and the delayed lymphopenia (90 min postexercise, p < .05 vs. preexercise) were similar on all trials. Bacterially stimulated neutrophil degranulation decreased during recovery in control (23% at 180 min, p < .01 vs. preexercise) but remained above preexercise levels with CHO and CHO+PRO. In conclusion, CHO ingestion, with or without PRO, immediately after prolonged strenuous exercise prevented the decrease in bacterially stimulated neutrophil degranulation during recovery.

Restricted access

Luc J.C. van Loon

Protein, protein hydrolysates, and amino acids have become popular ingredients in sports nutrition. The use of protein, protein hydrolysates, and amino acid mixtures has multiple applications when aiming to improve post exercise recovery. After exhaustive endurance-type exercise, muscle glycogen repletion is the most important factor determining the time needed to recover. Coingestion of relatively small amounts of protein and/or amino acids with carbohydrate can be used to augment postprandial insulin secretion and accelerate muscle glycogen synthesis rates. Furthermore, it has been well established that ingesting protein, protein hydrolysates, and amino acid can stimulate protein synthesis and inhibit protein breakdown and, as such, improve net muscle protein balance after resistance- or endurance-type exercise. The latter has been suggested to lead to a more effective adaptive response to each successive exercise bout. To augment net muscle protein accretion, athletes involved in resistance-type exercise generally ingest both protein and carbohydrate during post exercise recovery. However, carbohydrate ingestion after resistance-type exercise does not seem to be warranted to further stimulate muscle protein synthesis or improve whole-body protein balance when ample protein has already been ingested. Because resistance-type exercise is also associated with a substantial reduction in muscle glycogen content, it would be preferred to coingest some carbohydrate when aiming to accelerate glycogen repletion. More research is warranted to assess the impact of ingesting different proteins, protein hydrolysates, and/or amino acids on muscle protein accretion after exercise.

Restricted access

James A. Betts, Emma Stevenson, Clyde Williams, Catrin Sheppard, Edwin Grey and Joe Griffin

Including protein in a carbohydrate solution may accelerate both the rate of glycogen storage and the restoration of exercise capacity following prolonged activity. Two studies were undertaken with nine active men in study A and seven in study B. All participants performed 2 trials, each involving a 90 min run at 70% VO2max followed by a 4 h recovery. During recovery, either a 9.3% carbohydrate solution (CHO) or the same solution plus 1.5% protein (CHO-PRO) was ingested every 30 min in volumes providing either 1.2 g CHO · kg−1 · h−1 (study A) or 0.8 g CHO · kg−1 · h−1 (study B). Exercise capacity was then assessed by run time to exhaustion at 85% VO2max. Ingestion of CHO-PRO elicited greater insulinemic responses than CHO (P ≤ 0.05) but with no differences in run times to exhaustion. Within the context of this experimental design, CHO and CHO-PRO restored running capacity with equal effect.

Restricted access

Samuel G. Impey, Kelly M. Hammond, Robert Naughton, Carl Langan-Evans, Sam O. Shepherd, Adam P. Sharples, Jessica Cegielski, Kenneth Smith, Stewart Jeromson, David L. Hamilton, Graeme L. Close and James P. Morton

in the anterior crease of the forearm. Blood samples were collected immediately prior to and every 15 min during exercise as well as at 30-min intervals in the recovery period from exercise. Subjects consumed 22 g of protein from one of two commercially available products consisting of a hydrolyzed