Search Results

You are looking at 101 - 110 of 266 items for :

  • "treadmill" x
  • Psychology and Behavior in Sport/Exercise x
Clear All
Restricted access

Jamie L. Moul, Bert Goldman and Beverly Warren

The effect of exercise on cognitive performance in an older population was studied. Thirty sedentary men and women 65–72 years of age were randomly assigned to a walking group, a weight training group, or a placebo control group. Intervention groups exercised 30–60 min 5 days per week for 16 weeks, with the walking group training at 60% heart rate reserve, the weight training group employing the DAPRE method of weight progression, and the placebo control group engaging in mild range-of-motion and flexibility movements that kept their heart rates close to resting levels. At baseline and 16 weeks posttraining each subject completed the Ross Information Processing Assessment (RIPA), a maximal graded treadmill test, and a strength assessment of the knee extensors and elbow flexors. Sixteen weeks of walking improved VO2peak of the sedentary subjects 15.8%; VO2peak did not improve in the other two groups. Additionally, the RIPA scores of the walking group increased 7.5%, while those of the weight-training and control groups showed little change.

Restricted access

Michael J. Davies, Gail P. Dalsky and Paul M. Vanderburgh

This study employed allometry to scale maximal oxygen uptake (V̇O2 max) by body mass (BM) and lean body mass (LBM) in healthy older men. Ratio standards (ml · kg−1 · min−1) derived by dividing absolute V̇O2 max (L · min−1) by BM or LBM often fail to control for the body size variable. The subjects were 73 older men (mean ± SD: age = 69.7 ± 4.3 yrs, BM = 80.2 ± 9.6 kg, height = 174.1 ± 6.9 cm). V̇O2 max was assessed on a treadmill with the modified Balke protocol (V̇O2 max = 2.2 ± 0.4 L · min−1). Body fat (27.7 ± 6.4%) was assessed with dual energy x-ray absorptiometry. Allometry applied to BM and V̇O2 max determined the BM exponent to be 0.43, suggesting that heavier older men are being penalized when ratio standards are used. Allometric scaling applied to LBM revealed the LBM exponent to be 1.05 (not different from the ratio standard exponent of 1.0). These data suggest that the use of ratio standards to evaluate aerobic fitness in older men penalized fatter older men but not those with higher LBM.

Restricted access

Carmelo Bazzano, Lee N. Cunningham, Giovanni Cama and Tony Falconio

This study examined the physiology of the 1-mile walk test as administered in the field with 16 (7 M, 9 F) older adults (mean age 66.1 ± 5.9 yrs). Physiologic data were obtained via a Cosmed K2 miniaturized O2 analyzer with telemetric capabilities during a maximal treadmill (TM) test and a 1-mile walk test (MWT). Oxygen consumption (ml · kg−1 · min−1), minute ventilation (L · min−1), and heart rate (b · min−1) values obtained at maximal levels on the TM were 25.6 ± 7.6, 57 ± 17, and 155 ± 16, respectively. The measured V̇O2 submax during the MWT was 18.5 + 5, V̇E submax was 44 ± 10, and HR submax was 140 ± 19. The subjects were able to hold 74% of the V̇O2max, 81% of V̇Emax, and 91% of HR max. An upward drift for HR and V̇E was noted while V̇O2 remained constant throughout the MWT. The MWT with older subjects requires a vigorous level of metabolic and cardiorespiratory intensity. For healthy older adults who have been properly screened for hidden metabolic and cardiovascular diseases, participation in the MWT appears feasible.

Restricted access

Candace D. Perkins, James M. Pivarnik and Matthew R. Green

Background:

The reliability and validity of the SensorMedics VmaxST was tested.

Methods:

Thirty subjects (age = 24.5 ± 4.0 years, height = 174.8 ± 9.8 cm, weight = 70.3 ± 12.6 kg) performed treadmill exercise on three occasions, twice using the VmaxST and once using the SensorMedics 2900 system. Oxygen consumption (VO2; L/min) and heart rate (HR; beats/min) were measured continuously during three, 6- minute stages: 80 m/min, 0% grade; 94 m/min, 5% grade; and 160 m/min, 0% grade, and VO2max.

Results:

Reliability was high, and measurement error was low for VO2 (Rxx range = 0.97 - 0.99, CI = 0.94 - 1.00, SEM = 0.03 - 0.08 L/min) and HR (Rxx = 0.94 - 0.99, CI = 0.88 - 1.00, SEM = 1.8 - 3.2 beats/min). Validity was high for VO2 (Rxy range = 0.92 - 0.98, CI = 0.84 - 0.99, SEE = 0.08 - 0.21 L/min) and HR (Rxy = 0.97 - 0.99, CI = 0.94 - 1.00, SEE = 0.9 - 1.8 beats/min). Mean differences in VO2 between VmaxST and 2900 were small yet significant (P < 0.001).

Conclusions:

The VmaxST demonstrated excellent reliability and validity for measuring VO2 and HR over several exercise intensities. Small overestimates in VO2 by the VmaxST are countered by low measurement error.

Restricted access

Charles F. Morgan, Allison R. Tsuchida, Michael William Beets, Ronald K. Hetzler and Christopher D. Stickley

Background:

Physical activity guidelines for youth and adults include recommendations for moderate intensity activity to attain health benefits. Indirect calorimetry studies have consistently reported a 100 ste·min−1 threshold for moderate intensity walking in adults. No indirect calorimetry studies have investigated step-rate thresholds in children and therefore the primary purpose of the study was to determine preliminary step-rate thresholds for moderate physical activity walking in children.

Methods:

Oxygen consumption was measured at rest and used to determine 3 and 4 age-adjusted metabolic equivalents (A-AMETs) for 4 treadmill trials (self-selected, 2.5, 3.0, and 3.5 MPH). Two trained observers simultaneously counted children’s steps during each walking trial. Step-rate thresholds associated with moderate-intensity activity, defined as 3 and 4 A-AMETs, were determined using hierarchical linear modeling.

Results:

Regression analysis determined an overall step rate of 112 and 134 step·min-1 for 3 and 4 A-AMETs respectively. Body mass index (BMI) weight status and age were positively related to A-AMETs.

Conclusions:

We suggest age and BMI weight status specific recommendations that range from a low of 100 step·min-1 threshold (3 A-AMETs) for overweight/obese 11- to 12-year-olds to a high of 140 step·min-1 threshold (4 A-AMETs) for healthy weight 9- to 10-year-old children.

Restricted access

Kurusart Konharn, Wichai Eungpinichpong, Kluaymai Promdee, Paramaporn Sangpara, Settapong Nongharnpitak, Waradanai Malila and Jirachai Karawa

Background:

The suitability of smartphone applications (apps) currently used to track walking/running may differ depending on a person’s weight condition. This study aimed to examine the validity and reliability of apps for both normal-weight and overweight/obese young adults.

Methods:

Thirty normal-weight (aged 21.7 ± 1.0 years, BMI 21.3 ± 1.9 kg/m2) and 30 overweight/ obese young adults (aged 21.0 ± 1.4 years, BMI 28.6 ± 3.7 kg/m2) wore a smartphone and pedometer on their right hip while walking/running at 3 different intensities on treadmills. Apps was randomly assigned to each individual for measuring average velocity, step count, distance, and energy expenditure (EE), and these measurements were then analyzed.

Results:

The apps were not accurate in counting most of the measured variables and data fell significantly lower in the parameters than those measured with standard-reference instruments in both light and moderate intensity activity among the normal-weight group. Among the overweight and obese group, the apps were not accurate in detecting velocity, distance, or EE during either light or vigorous intensities. The percentages of mean difference were 30.1% to 48.9%.

Conclusion:

Apps may not have sufficient accuracy to monitor important physical parameters of human body movement. Apps need to be developed that can, in particular, respond differently based on a person’s weight status.

Restricted access

Gianluca Vernillo, Aldo Savoldelli, Barbara Pellegrini and Federico Schena

Background:

Accurate assessments of physical activity and energy expenditure (EE) are needed to advance research on positive and negative graded walking.

Purpose:

To evaluate the validity of 2 SenseWear Armband monitors (Pro3 and the recently released Mini) during graded walking.

Methods:

Twenty healthy adults wore both monitors during randomized walking activities on a motorized treadmill at 7 grades (0%, ±5%, ±15%, and ±25%). Estimates of total EE from the monitors were computed using different algorithms and compared with values derived from indirect calorimetry methodology using a 2-way mixed model ANOVA (Device × Condition), correlation analyses and Bland-Altman plots.

Results:

There was no significant difference in EE between the 2 armbands in any of the conditions examined. Significant main effects for device and condition, as well as a consistent bias, were observed during positive and negative graded walking with a greater over- and under-estimation at higher slope.

Conclusions:

Both the armbands produced similar EE values and seem to be not accurate in estimation of EE during activities involving uphill and downhill walking. Additional work is needed to understand factors contributing to this discrepancy and to improve the ability of these monitors to accurately measure EE during graded walking.

Restricted access

Renee E. Magnan, Bethany M. Kwan, Joseph T. Ciccolo, Burke Gurney, Christine M. Mermier and Angela D. Bryan

Background:

Maximal oxygen uptake (VO2max), an assessment of cardiorespiratory fitness, is regularly used as the primary outcome in exercise interventions. Many criteria have been suggested for validating such tests—most commonly, a plateau in oxygen consumption. The current study investigated the proportion of inactive individuals who reached a plateau in oxygen uptake and who achieved a valid test as assessed by secondary criteria (RERmax ≥ 1.1; RPEmax ≥ 18; age predicted HRmax ±10bpm), and the correlates of a successful plateau or achievement of secondary criteria during a VO2max session.

Methods:

Participants (n = 240) were inactive individuals who completed VO2max assessments using an incremental treadmill test. We explored physical, behavioral, and motivational factors as predictors of meeting criteria for meeting a valid test.

Results:

Approximately 59% of the sample achieved plateau using absolute (increase of VO2 of 150ml O2 or less) and 37% achieved plateau using relative (increase of VO2 of 1.5ml/kg O2 or less) criteria. Being male, having a higher BMI, a greater waist-to-hip ratio, and increased self-efficacy were associated with lower odds of achieving an absolute plateau, whereas none of these factors predicted odds of achieving relative plateau.

Conclusion:

Findings raise questions about the validity of commonly used criteria with less active populations.

Restricted access

Jeremy A. Steeves, Brian M. Tyo, Christopher P. Connolly, Douglas A. Gregory, Nyle A. Stark and David R. Bassett

Background:

This study compared the validity of a new Omron HJ-303 piezoelectric pedometer and 2 other pedometers (Sportline Traq and Yamax SW200).

Methods:

To examine the effect of speed, 60 subjects walked on a treadmill at 2, 3, and 4 mph. Twenty subjects also ran at 6, 7, and 8 mph. To test lifestyle activities, 60 subjects performed front-back-side-side stepping, elliptical machine and stair climbing/descending. Twenty others performed ballroom dancing. Sixty participants completed 5 100-step trials while wearing 5 different sets of the devices tested device reliability. Actual steps were determined using a hand tally counter.

Results:

Significant differences existed among pedometers (P < .05). For walking, the Omron pedometers were the most valid. The Sportline overestimated and the Yamax underestimated steps (P < .05). Worn on the waist or in the backpack, the Omron device and Sportline were valid for running. The Omron was valid for 3 activities (elliptical machine, ascending and descending stairs). The Sportline overestimated all of these activities, and Yamax was only valid for descending stairs. The Omron and Yamax were both valid and reliable in the 100-step trials.

Conclusions:

The Omron HJ-303, worn on the waist, appeared to be the most valid of the 3 pedometers.

Restricted access

Rebecca E. Hasson, Kirsten E. Granados, David Xavier Marquez, Gary Bennett, Patty Freedson and Barry Braun

Background:

Racial differences in psychological determinants of exercise exist between non-Hispanic blacks (blacks) and non-Hispanic whites (whites). To date, no study has examined racial differences in the psychological responses during and after exercise. The objective of this study was to compare psychological outcomes of single exercise bouts in blacks and whites.

Methods:

On 3 separate occasions, sedentary black (n = 16) and white (n = 14) participants walked on a treadmill at 75%max HR for 75 minutes. Questionnaires assessing mood, state anxiety, and exercise task self-efficacy were administered before and after each exercise bout. In-task mood and rating of perceived exertion (RPE) were measured every 5 minutes during exercise.

Results:

Exercise self-efficacy and psychological distress significantly improved in both blacks and whites. However during exercise blacks reported more positive in-task mood and lower RPE compared with whites.

Conclusions:

These data suggest that racial differences exist in psychological responses during exercise. Further research should confirm these findings in a larger, free-living population.