Search Results

You are looking at 111 - 120 of 412 items for :

  • "physiologic responses" x
Clear All
Restricted access

Carlo Castagna, Lorenzo Francini, Susana C.A. Póvoas and Stefano D’Ottavio

Purpose:

To examine the acute effects of generic drills (running drills [RDs]) and specific (small-sided-games [SSGs]) long-sprint-ability (LSA) drills on internal and external load of male soccer players.

Methods:

Fourteen academy-level soccer players (mean ± SD age 17.6 ± 0.61 y, height 1.81 ± 0.63 m, body mass 69.53 ± 4.65 kg) performed four 30-s LSA bouts for maintenance (work:rest 1:2) and production (1:5) with RDs and SSGs. Players’ external load was tracked with GPS technology (20-Hz), and heart rate (HR), blood lactate concentration (BLc), and rating of perceived exertion (RPE) were used to characterize players’ internal load. Individual peak BLc was assessed with a 30-s all-out test on a nonmotorized treadmill (NMT).

Results:

Compared with SSGs, the RDs had a greater effect on external load and BLc (large and small, respectively). During SSGs players covered more distance with high-intensity decelerations (moderate to small). Muscular RPE was higher (small to large) in RDs than in SSGs. The production mode exerted a moderate effect on BLc while the maintenance condition elicited higher cardiovascular effects (small to large).

Conclusion:

The results of this study showed the superiority of generic over specific drills in inducing LSA-related physiological responses. In this regard production RDs showed the higher postexercise BLc. Individual peak blood lactate responses were found after the NMT 30-s all-out test, suggesting this drill as a valid option to RDs. The practical physiological diversity among the generic and specific LSA drills here considered enable fitness trainers to modulate prescription of RD and SSG drills for LSA according to training schedule.

Restricted access

Maria Konstantaki, Edward Winter and Ian Swaine

Context:

Forward propulsion in freestyle swimming is predominantly achieved through arm action. Few studies have assessed the effects of arm training on arm power and swimming performance, yet there have not been any investigations on the effects of arms-only swimming training on swimming performance and physiological responses to arm exercise.

Purpose:

To investigate the changes in arms-only and full-stroke swimming performance, movement economy and aerobic power after an arms-only swimming training program.

Methods:

Fifteen male county level swimmers were assigned either to an experimental (ES, n = 8) or control group (CS, n = 7). For six weeks ES performed arms-only freestyle swimming exercises for 20% of their weekly training distance three times per week, whereas CS performed their usual swimming training. Before and after the training program, both groups performed a) two time trials, 186 m using arms-only (186ARMS) and 372 m using full-stroke (372FULL) freestyle swimming, and b) an incremental arm-pulling exercise test. The time to complete the trials was recorded. Peak oxygen uptake (VO2peak), peak exercise intensity (EIpeak) submaximal oxygen uptake at 60 W (VO2−60) and exercise intensity at ventilatory threshold (VTW) were determined from the exercise test.

Results:

After training, ES had improved in 186ARMS (−14.2 ± 3.6%, P = .03), VO2−60 (−22.5 ± 2.3%, P = .04), EIpeak (+17.8 ± 4.2%, P = .03), and VTW (+18.9 ± 2.3%, P = .02), but not in VO2peak (P = .09) or in 372FULL (P = .07). None of the measures changed in CS (P > .05).

Conclusion:

Arms-only swimming training at 20% of the weekly training distance is an effective method to improve arm conditioning during the preparatory phase of the annual training cycle.

Restricted access

Sonya L. Cameron, Rebecca T. McLay-Cooke, Rachel C. Brown, Andrew R. Gray and Kirsty A. Fairbairn

Purpose:

This study investigated the effect of ingesting 0.3 g/kg body weight (BW) of sodium bicarbonate (NaHCO3) on physiological responses, gastrointestinal (GI) tolerability, and sprint performance in elite rugby union players.

Methods:

Twenty-five male rugby players, age 21.6 (2.6) yr, participated in a randomized, double-blind, placebo-controlled crossover trial. Sixty-five minutes after consuming 0.3 g/kg BW of either NaHCO3 or placebo, participants completed a 25-min warm-up followed by 9 min of high-intensity rugby-specific training followed by a rugby-specific repeated-sprint test (RSRST). Whole-blood samples were collected to determine lactate and bicarbonate concentrations and pH at baseline, after supplement ingestion, and immediately after the RSRST. Acute GI discomfort was assessed by questionnaire throughout the trials, and chronic GI discomfort was assessed during the 24 hr postingestion.

Results:

After supplement ingestion and immediately after the RSRST, blood HCO3 concentration and pH were higher for the NaHCO3 condition than for the placebo condition (p < .001). After the RSRST, blood lactate concentrations were significantly higher for the NaHCO3 than for the placebo condition (p < .001). There was no difference in performance on the RSRST between the 2 conditions. The incidence of belching, stomachache, diarrhea, stomach bloating, and nausea was higher after ingestion of NaHCO3 than with placebo (all p < .050). The severity of stomach cramps, belching, stomachache, bowel urgency, diarrhea, vomiting, stomach bloating, and flatulence was rated worse after ingestion of NaHCO3 than with placebo (p < .050).

Conclusions:

NaHCO3 supplementation increased blood HCO3 concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO3 may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.

Restricted access

Kerry McGawley and Hans-Christer Holmberg

Purpose:

Cross-country-ski races place complex demands on athletes, with events lasting between approximately 3 min and 2 h. The aim of the current study was to compare the aerobic and anaerobic measures derived from a short time trial (TT) between male and female skiers using diagonal cross-country skiing.

Methods:

Twenty-four highly trained cross-country skiers (12 male and 12 female, age 17.4 ± 1.4 y, body mass 68.2 ± 8.9 kg, height 174 ± 8 cm) participated. The submaximal VO2–speed relationship and VO2max were derived from an incremental ramp test to exhaustion (RAMP), while the accumulated oxygen deficit (AOD), peak VO2, and performance time were measured during a 600-m TT.

Results:

The female skiers took longer to complete the TT than the males (209 ± 9 s vs 166 ± 7 s, P < .001) and exhibited a lower relative anaerobic contribution (20% ± 4% vs 24% ± 3%, P = .015) and a higher fractional utilization of VO2max (84% ± 4% vs 79% ± 5%, P = .007) than males. Although there was no significant difference in AOD between the sexes (40.9 ± 9.5 and 47.3 ± 7.4 mL/kg for females and males, respectively; P = .079), the mean difference ± 90% confidence intervals of 6.4 ± 6.0 mL/kg reflected a likely practical difference (ES = 0.72). The peak VO2 during the TT was significantly higher than VO2max during the RAMP for all participants combined (62.3 ± 6.8 vs 60.5 ± 7.2 mL · kg−1 · min−1, P = .011), and the mean difference ± 90% confidence intervals of 1.8 ± 1.1 mL · kg−1 · min−1 reflected a possible practical difference (ES = 0.25).

Conclusions:

These results show that performance and physiological responses to a self-paced TT lasting approximately 3 min differ between sexes. In addition, a TT may provide a valid measure of VO2max.

Restricted access

Martin Buchheit, Bachar Haydar, Karim Hader, Pierre Ufland and Said Ahmaidi

Purpose:

To examine physiological responses to submaximal feld running with changes of direction (COD), and to compare two approaches to assess running economy (RE) with COD, ie, during square-wave (SW) and incremental (INC) exercises.

Methods:

Ten male team-sport athletes performed, in straight-line or over 20 m shuttles, one maximal INC and four submaximal SW (45, 60, 75 and 90% of the velocity associated with maximal pulmonary O2 uptake [vVO2pmax]). Pulmonary (VO2p) and gastrocnemius (VO2m) O2 uptake were computed for all tests. For both running mode, RE was estimated as the O2 cost per kilogram of bodyweight, per meter of running during all SW and INC.

Results:

Compared with straight-line runs, shuttle runs were associated with higher VO2p (eg, 33 ± 6 vs 37 ± 5 mL O2·min–1·kg–1 at 60%, P < .01) and VO2m (eg, 1.1 ± 0.5 vs 1.3 ± 0.8 mL O2·min–1·100 g–1 at 60%, P = .18, Cohen’s d = 0.32). With COD, RE was impaired during SW (0.26 ± 0.02 vs 0.24 ± 0.03 mL O2·kg–1·m–1, P < .01) and INC (0.23 ± 0.04 vs 0.16 ± 0.03 mL O2·kg–1·m–1, P < .001). For both SW and INC tests, the changes in RE with COD were related to height (eg, r = .56 [90%CL, 0.01;0.85] for SW) and weekly training/competitive volume (eg, r = –0.58 [–0.86;–0.04] for SW). For both running modes, RE calculated from INC was better than that from SW (both P < .001).

Conclusion:

Although RE is impaired during feld running with COD, team-sport players of shorter stature and/or presenting greater training/competitive volumes may present a lower RE deterioration with COD. Present results do not support the use of INC to assess RE in the feld, irrespective of running mode.

Restricted access

Mohamed Ali Nabli, Nidhal Ben Abdelkrim, Imed Jabri, Tahar Batikh, Carlo Castagna and Karim Chamari

Purpose:

To examine the relation between game performance, physiological responses, and field-test results in Tunisian basketball referees.

Methods:

Computerized time–motion analysis, heart rate (HR), and blood lactate concentration [La] were measured in 15 referees during 8 competitive games (under-19-y-old Tunisian league). Referees also performed a repeated-sprint test (RSA), Yo-Yo Intermittent Recovery Test level 1 (YYIRTL1), agility T-test, and 30-m sprint with 10-m lap time. Computerized video analysis determined the time spent in 5 locomotor activities (standing, walking, jogging, running, and sprint), then grouped in high-, moderate-, and low-intensity activities (HIAs, MIAs, and LIAs, respectively).

Results:

YYIRTL1 performance correlated with (1) total distance covered during the 4th quarter (r = .52, P = .04) and (2) distance covered in LIA during all game periods (P < .05). Both distance covered and time spent in MIA during the 1st quarter were negatively correlated with the YYIRTL1 performance (r = –.53, P = .035; r = –.67, P = .004, respectively). A negative correlation was found between distance covered at HIA during the 2nd half (3rd quarter + 4th quarter) and fatigue index of the RSA test (r = –.54, P = .029). Mean HR (expressed as %HRpeak) during all game periods was correlated with YYIRTL1 performance (.61 ≤ r < .67, P < .01).

Conclusions:

This study showed that (1) the YYIRTL1 performance is a moderate predictor of game physical performance in U-19 basketball referees and (2) referees’ RSA correlates with the amount of HIA performed during the 2nd half, which represents the ability to keep up with play.

Restricted access

Neil Armstrong

Purpose:

The presence of a maturational threshold that modulates children’s physiological responses to exercise training continues to be debated, not least due to a lack of longitudinal evidence to address the question. The purpose of this study was to investigate the interaction between swim-training status and maturity in nineteen trained (T, 10 ± 1 years, −2.4 ± 1.9 years prepeak height velocity, 8 boys) and fifteen untrained (UT, 10 ± 1 years, −2.3 ± 0.9 years prepeak height velocity, 5 boys) children, at three annual measurements.

Methods:

In addition to pulmonary gas exchange measurements, stroke volume (SV) and cardiac output (Q) were estimated by thoracic bioelectrical impedance during incremental ramp exercise.

Results:

At baseline and both subsequent measurement points, trained children had significantly (p < .05) higher peak oxygen uptake (year1 T 1.75 ± 0.34 vs. UT 1.49 ± 0.22; year 2 T 2.01 ± 0.31 vs. UT 1.65 ± 0.08; year 3 T 2.07 ± 0.30 vs. UT 1.77 ± 0.16 l min−1) and Q (year 1 T 15.0 ± 2.9 vs. UT 13.2 ± 2.2; year 2 T 16.1 ± 2.8 vs. UT 13.8 ± 2.9; year 3 T 19.3 ± 4.4 vs. UT 16.0 ± 2.7 l min−1). Furthermore, the SV response pattern differed significantly with training status, demonstrating the conventional plateau in UT but a progressive increase in T. Multilevel modeling revealed that none of the measured pulmonary or cardiovascular parameters interacted with maturational status, and the magnitude of the difference between T and UT was similar, irrespective of maturational status.

Conclusion:

The results of this novel longitudinal study challenge the notion that differences in training status in young people are only evident once a maturational threshold has been exceeded.

Restricted access

Alexandre Dellal, Carlos Lago-Penas, Del P. Wong and Karim Chamari

Purpose:

The aim of this study was to examine the influence of the number of ball touches authorized per possession on the physical demands, technical performances and physiological responses throughout the bouts within 4 vs. 4 soccer small-sided games (SSGs).

Methods:

Twenty international soccer players (27.4 ± 1.5 y, 180.6 ± 2.3 cm, 79.2 ± 4.2 kg, body fat 12.7 ± 1.2%) performed three different 4 vs. 4 SSGs (4 × 4 min) in which the number of ball touches authorized per possession was manipulated (1 touch = 1T; 2 touches = 2T; Free Play = FP). The SSGs were divided in 4 bouts (B1, B2, B3 and B4) separated by 3 min of passive recovery. The physical performances, technical activities, heart rate responses, blood lactate and RPE were analyzed.

Results:

The FP rule presented greater number of duels, induced the lowest decreases of the sprint and high-intensity performances, and affected less the technical actions (successful passes and number of ball losses) from B1 to B4 as compared with 1T and 2T forms. Moreover, the SSG played in 1T form led to reach higher solicitation of the high-intensity actions while players presented more difficulty to perform a correct technical action.

Conclusions:

The modification of the number of ball touches authorized per possession affects the soccer player activity from the first to the last bout of SSG, indicating that the determination of this rule has to be precisely planned by the coach according to the objectives of the training.

Restricted access

Sara Dean, Andrea Braakhuis and Carl Paton

Researchers have long been investigating strategies that can increase athletes’ ability to oxidize fatty acids and spare carbohydrate, thus potentially improving endurance capacity. Green-tea extract (epigallocatechin-3-gallate; EGCG) has been shown to improve endurance capacity in mice. If a green-tea extract can stimulate fat oxidation and as a result spare glycogen stores, then athletes may benefit through improved endurance performance. Eight male cyclists completed a study incorporating a 3-way crossover, randomized, placebo-controlled, double-blinded, diet-controlled research design. All participants received 3 different treatments (placebo 270 mg, EGCG 270 mg, and placebo 270 mg + caffeine 3 mg/kg) over a 6-day period and 1 hr before exercise testing. Each participant completed 3 exercise trials consisting of 60 min of cycling at 60% maximum oxygen uptake (VO2max) immediately followed by a self-paced 40-km cycling time trial. The study found little benefit in consuming green-tea extract on fat oxidation or cycling performance, unlike caffeine, which did benefit cycling performance. The physiological responses observed during submaximal cycling after caffeine ingestion were similar to those reported previously, including an increase in heart rate (EGCG 147 ± 17, caffeine 146 ± 19, and placebo 144 ± 15 beats/min), glucose at the 40-min exercise time point (placebo 5.0 ± 0.8, EGCG 5.4 ± 1.0, and caffeine 5.8 ± 1.0 mmol/L), and resting plasma free fatty acids and no change in the amount of carbohydrate and fat being oxidized. Therefore, it was concluded that green-tea extract offers no additional benefit to cyclists over and above those achieved by using caffeine.

Restricted access

Rob Duffield, Monique King and Melissa Skein

Purpose:

This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise.

Methods:

Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22°C or 33°C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min post exercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured.

Results:

No differences (P = 0.73 to 0.95) in peak power during repeated sprints were present between conditions. Post exercise MVC was reduced (P < .05) in both conditions and a moderate effect size (d = 0.60) indicated a slower percentage MVC recovered by 60 min in the heat (83 ± 10 vs 74 ± 11% recovered). Both heart rate and core temperature were significantly higher (P < .05) during recovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min post exercise in the heat.

Conclusions:

The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.