Search Results

You are looking at 111 - 120 of 507 items for :

  • "physiological responses" x
Clear All
Restricted access

Mark Waldron and Aron Murphy

This study aimed to identify characteristics of match performance and physical ability that discriminate between elite and subelite under-14 soccer players. Players were assessed for closed performance and movement, physiological responses, and technical actions during matches. Elite players covered more total m·min−1 (115.7 ± 6.6 cf. 105.4 ± 7.7 m·min−1) and high-intensity m·min−1 (elite = 14.5 ± 2.3 cf. 11.5 ± 3.7 m·min−1) compared with subelite players. Elite players also attempted more successful (0.41 ± 0.11 cf. 0.18 ± 0.02) and unsuccessful ball retentions·min−1 (0.14 ± 0.04 cf. 0.06 ± 0.02) compared with subelite players. Elite players were faster over 10 m (1.9 ± 0.1 cf. 2.3 ± 0.2 s) and faster dribblers (16.4 ± 1.4 cf. 18.2 ± 1.1 s) compared with subelite players. Speed (10 m) and successful ball retention·min−1 contributed to a predictive model, explaining 96.8% of the between-group variance. The analysis of match performance provides a more thorough understanding of the factors underlying talent among youth soccer players.

Restricted access

W. Jack Rejeski, Edward Gregg, Amy Thompson and Michael Berry

In this investigation, we examined the role of acute aerobic exercise (AE) in buffering physiological responses to mental stress. Twelve trained cyclists participated in three counterbalanced treatment conditions on separate days: attention control, light exercise (50% of VO2max for 30 min), and heavy exercise (80% of VO2max for 60 min). After a 30-min rest period following each condition, subjects completed a modified Stroop task. Blood pressure (BP) and heart rate (HR) were monitored for (a) baseline responses, (b) task reactivity, and (c), 5 min of recovery following the stressor. Mean arterial pressure (MAP) revealed that reactivity was attenuated by both heavy- and light-exercise conditions as compared to responses in the control condition. Moreover, heavy exercise was more effective in reducing MAP reactivity than light exercise. Systolic BP during the task was significantly higher in the control and light-exercise conditions than following heavy exercise; diastolic BP was significantly higher in the control condition than in either exercise condition. There were no significant effects for HR. These results suggest that there is a dose-response relationship between acute AE and the attenuation of psychophysiological reactivity during stress.

Restricted access

Kelly R. Rice, Catherine Gammon, Karin Pfieffer and Stewart Trost

Purpose:

The OMNI perceived exertion scale was developed for children to report perceived effort while performing physical activity; however no studies have formally examined age-related differences in validity. This study evaluated the validity of the OMNI-RPE in 4 age groups performing a range of lifestyle activities.

Methods:

206 participants were stratified into four age groups: 6-8 years (n = 42), 9-10 years (n = 46), 11-12 years (n = 47), and 13-15 years (n = 71). Heart rate and VO2 were measured during 11 activity trials ranging in intensity from sedentary to vigorous. After each trial, participants reported effort from the OMNI walk/run scale. Concurrent validity was assessed by calculating within-subject correlations between OMNI ratings and the two physiological indices.

Results:

The average correlation between OMNI ratings and VO2 was 0.67, 0.77, 0.85, and 0.87 for the 6-8, 9-10, 11-12 and 13-15 y age groups, respectively.

Conclusion:

The OMNI RPE scale demonstrated fair to good evidence of validity across a range of lifestyle activities among 6- to 15-year-old children. The validity of the scale appears to be developmentally related with RPE reports closely reflecting physiological responses among children older than 8 years.

Restricted access

Naiandra Dittrich, Ricardo Dantas de Lucas, Ralph Beneke and Luiz Guilherme Antonacci Guglielmo

The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg−1 · min−1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P < .05). Regarding the cardiorespiratory responses, VO2 and respiratory-exchange ratio remained stable during both TE tests while heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.

Restricted access

Gi Broman, Miguel Quintana, Margareta Engardt, Lennart Gullstrand, Eva Jansson and Lennart Kaijser

The aim of the study was to examine submaximal and maximal physiological responses and perceived exertion during deep-water running with a vest compared with the responses during treadmill running in healthy elderly women. Eleven healthy women 70 ± 2 years old participated. On two different occasions they performed a graded maximal exercise test on a treadmill on land and a graded maximal exercise test in water wearing a vest. At maximal work the oxygen uptake was 29% lower (p < .05), the heart rate was 8% lower (p < .05), and the ventilation was 16% lower (p < .05) during deep-water running than during treadmill running. During submaximal absolute work the heart rate was higher during deep-water running than during treadmill running for the elderly women. The participants had lower maximal oxygen uptake, heart rate, ventilation, respiratory-exchange ratio, and rate of perceived exertion during maximal deep-water running with a vest than during maximal treadmill running. These responses were, however, higher during submaximal deep-water running than during treadmill running.

Restricted access

Martin Buchheit, Bachar Haydar, Karim Hader, Pierre Ufland and Said Ahmaidi

Purpose:

To examine physiological responses to submaximal feld running with changes of direction (COD), and to compare two approaches to assess running economy (RE) with COD, ie, during square-wave (SW) and incremental (INC) exercises.

Methods:

Ten male team-sport athletes performed, in straight-line or over 20 m shuttles, one maximal INC and four submaximal SW (45, 60, 75 and 90% of the velocity associated with maximal pulmonary O2 uptake [vVO2pmax]). Pulmonary (VO2p) and gastrocnemius (VO2m) O2 uptake were computed for all tests. For both running mode, RE was estimated as the O2 cost per kilogram of bodyweight, per meter of running during all SW and INC.

Results:

Compared with straight-line runs, shuttle runs were associated with higher VO2p (eg, 33 ± 6 vs 37 ± 5 mL O2·min–1·kg–1 at 60%, P < .01) and VO2m (eg, 1.1 ± 0.5 vs 1.3 ± 0.8 mL O2·min–1·100 g–1 at 60%, P = .18, Cohen’s d = 0.32). With COD, RE was impaired during SW (0.26 ± 0.02 vs 0.24 ± 0.03 mL O2·kg–1·m–1, P < .01) and INC (0.23 ± 0.04 vs 0.16 ± 0.03 mL O2·kg–1·m–1, P < .001). For both SW and INC tests, the changes in RE with COD were related to height (eg, r = .56 [90%CL, 0.01;0.85] for SW) and weekly training/competitive volume (eg, r = –0.58 [–0.86;–0.04] for SW). For both running modes, RE calculated from INC was better than that from SW (both P < .001).

Conclusion:

Although RE is impaired during feld running with COD, team-sport players of shorter stature and/or presenting greater training/competitive volumes may present a lower RE deterioration with COD. Present results do not support the use of INC to assess RE in the feld, irrespective of running mode.

Restricted access

Maria Konstantaki, Edward Winter and Ian Swaine

Context:

Forward propulsion in freestyle swimming is predominantly achieved through arm action. Few studies have assessed the effects of arm training on arm power and swimming performance, yet there have not been any investigations on the effects of arms-only swimming training on swimming performance and physiological responses to arm exercise.

Purpose:

To investigate the changes in arms-only and full-stroke swimming performance, movement economy and aerobic power after an arms-only swimming training program.

Methods:

Fifteen male county level swimmers were assigned either to an experimental (ES, n = 8) or control group (CS, n = 7). For six weeks ES performed arms-only freestyle swimming exercises for 20% of their weekly training distance three times per week, whereas CS performed their usual swimming training. Before and after the training program, both groups performed a) two time trials, 186 m using arms-only (186ARMS) and 372 m using full-stroke (372FULL) freestyle swimming, and b) an incremental arm-pulling exercise test. The time to complete the trials was recorded. Peak oxygen uptake (VO2peak), peak exercise intensity (EIpeak) submaximal oxygen uptake at 60 W (VO2−60) and exercise intensity at ventilatory threshold (VTW) were determined from the exercise test.

Results:

After training, ES had improved in 186ARMS (−14.2 ± 3.6%, P = .03), VO2−60 (−22.5 ± 2.3%, P = .04), EIpeak (+17.8 ± 4.2%, P = .03), and VTW (+18.9 ± 2.3%, P = .02), but not in VO2peak (P = .09) or in 372FULL (P = .07). None of the measures changed in CS (P > .05).

Conclusion:

Arms-only swimming training at 20% of the weekly training distance is an effective method to improve arm conditioning during the preparatory phase of the annual training cycle.

Restricted access

Rob Duffield, Monique King and Melissa Skein

Purpose:

This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise.

Methods:

Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22°C or 33°C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min post exercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured.

Results:

No differences (P = 0.73 to 0.95) in peak power during repeated sprints were present between conditions. Post exercise MVC was reduced (P < .05) in both conditions and a moderate effect size (d = 0.60) indicated a slower percentage MVC recovered by 60 min in the heat (83 ± 10 vs 74 ± 11% recovered). Both heart rate and core temperature were significantly higher (P < .05) during recovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min post exercise in the heat.

Conclusions:

The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.

Restricted access

Matt B. Brearley and James P. Finn

Background:

Despite the thermal challenge of demanding workloads performed in high cabin temperatures while wearing heavy heat-retardant clothing, information on physiological responses to racing V8 Supercars in hot conditions is not readily available.

Purpose:

To describe the thermal, cardiovascular, and perceptual strain on V8 Supercar drivers competing in hot conditions.

Methods:

Thermal strain was indicated by body-core temperature using an ingested thermosensitive pill. Cardiovascular strain was assessed from heart rate, hydration status, and sweat rate. Perceptual strain was estimated from self-rated thermal sensation, thermal discomfort (modified Gagge scales), perceived exertion (Borg scale), and perceptual strain index.

Results:

Prerace body-core temperatures were (mean ± SD) 37.7°C ± 0.4°C (range 37.0°C to 38.2°C), rising to 39.0°C ± 0.4°C (range 38.4°C to 39.7°C) postrace. Driver heart rates were >160 and >170 beats/min for 85.3% and 46.7% of racing, respectively. Sweat rates were 1.06 ± 0.12 L/h or 13.4 ± 1.2 mL · kg−1 · h−1, and postrace dehydration was 0.6% ± 0.6% of prerace body mass. Drivers rated thermal sensation as hot (10.3 ± 0.9), thermal discomfort as uncomfortable (3.1 ± 1.0), and perceived exertion as very hard to very, very hard (8.7 ± 1.7) after the races. Overall physiological and perceptual strain were 7.4 ± 1.0 and 7.1 ± 1.2, respectively.

Conclusions:

Despite the use of cooling, V8 Supercar drivers endure thermal, cardiovascular, and perceptual strain during brief driving bouts in hot conditions.

Open access

Stephen Seiler and Øystein Sylta

The purpose of this study was to compare physiological responses and perceived exertion among well-trained cyclists (n = 63) performing 3 different high-intensity interval-training (HIIT) prescriptions differing in work-bout duration and accumulated duration but all prescribed with maximal session effort. Subjects (male, mean ± SD 38 ± 8 y, VO2peak 62 ± 6 mL · kg–1 · min–1) completed up to 24 HIIT sessions over 12 wk as part of a training-intervention study. Sessions were prescribed as 4 × 16, 4 × 8, or 4 × 4 min with 2-min recovery periods (8 sessions of each prescription, balanced over time). Power output, HR, and RPE were collected during and after each work bout. Session RPE was reported after each session. Blood lactate samples were collected throughout the 12 wk. Physiological and perceptual responses during >1400 training sessions were analyzed. HIIT sessions were performed at 95% ± 5%, 106% ± 5%, and 117% ± 6% of 40-min time-trial power during 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively, with peak HR in each work bout averaging 89% ± 2%, 91% ± 2%, and 94% ± 2% HRpeak. Blood lactate concentrations were 4.7 ± 1.6, 9.2 ± 2.4, and 12.7 ± 2.7 mmol/L. Despite the common prescription of maximal session effort, RPE and sRPE increased with decreasing accumulated work duration (AWD), tracking relative HR. Only 8% of 4 × 16-min sessions reached RPE 19–20, vs 61% of 4 × 4-min sessions. The authors conclude that within the HIIT duration range, performing at “maximal session effort” over a reduced AWD is associated with higher perceived exertion both acutely and postexercise. This may have important implications for HIIT prescription choices.