Search Results

You are looking at 111 - 120 of 319 items for :

  • Athletic Training, Therapy, and Rehabilitation x
Clear All
Restricted access

Sheri A. Hale

Objective:

To review the etiology of patellar tendinopathy as it relates to clinical management of chronic patellar-tendon disease in athletes.

Data Sources:

Information was gathered from a MEDLINE search of literature in English using the key words patellar tendinitis, patellar tendonitis, patellar tendinosis, patellar tendinopathy, and jumper’s knee.

Study Selection:

All relevant peer-reviewed literature in English was reviewed.

Data Synthesis:

The etiology of patellar tendinopathy is multifactorial, incorporating both intrinsic and extrinsic factors. Age, muscle flexibility, training program, and knee-joint dynamics have all been associated with patellar tendinopathy. The roles of gender, body morphology, and patellar mobility in patellar tendinopathy are unclear.

Conclusions:

The pathoetiology of patellar tendinopathy is a complex process that results from both an inflammatory response and degenerative changes. There is a tremendous need for research to improve our understanding of the pathoetiology of patellar tendinopathy and its clinical management.

Restricted access

Benno M. Nigg, Gerald K. Cole and Gert-Peter Brüggemann

Impact forces have been speculated to be associated with the development of musculoskeletal injuries. However, several findings indicate that the concepts of “impact forces” and the paradigms of their “cushioning” may not be well understood in relation to the etiology of running injuries and that complex mechanisms may be responsible for injury development during running. The purposes of this paper are (a) to review impact mechanics during locomotion, (b) to review injuries and changes of biological tissue due to impact loading, and (c) to synthesize the mechanical and biological findings. In addition, directions for future research are discussed. Future research should address the development of noninvasive techniques to assess changes in the morphology and biochemistry of bone, cartilage, tendon, and ligaments; researchers should also try to simulate impact loading during activities such as running, focusing on the interaction of the various loading parameters that determine the acceptable windows of loading for biological tissues.

Restricted access

Geraldine L. Pellecchia, Holly Hamel and Peter Behnke

The purpose of this study was to compare an established protocol of modalities and transverse friction massage (MOD & TFM) with iontophoresis of dexamethasone and lidocaine (IONTO) in the treatment of patients with infrapatellar tendinitis. Thirty cases with infrapatellar tendinitis were randomly assigned to either the MOD & TFM or the IONTO intervention. Subjects still symptomatic after six sessions of intervention received the alternate treatment protocol. Four measures were used to assess patient status: a functional index questionnaire, a visual analog pain scale, a rating of tenderness with palpation of the involved tendon, and the number of step-ups needed to elicit pain. In response to the MOD & TFM intervention, only the number of step-ups performed to elicit pain showed significant improvement. All status measures improved significantly with the IONTO intervention. The results suggest that iontophoresis may be more effective and efficient in decreasing pain, reducing inflammation, and promoting healing in patients with infrapatellar tendinitis.

Restricted access

Danielle M. DeBruyne, Marina M. Dewhurst, Katelyn M. Fischer, Michael S. Wojtanowski and Chris Durall

Clinical Scenario:

Increasing the length of the muscle–tendon unit may prevent musculotendinous injury. Various methods have been proposed to increase muscle–tendon flexibility, including self-mobilization using foam rollers or roller massagers, although the effectiveness of these devices is uncertain. This review was conducted to determine if the use of foam rollers or roller massagers to improve hamstrings flexibility is supported by moderate- to high-quality evidence.

Clinical Question:

Are foam rollers or roller massagers effective for increasing hamstrings flexibility in asymptomatic physically active adults?

Summary of Key Findings:

The literature was searched for studies on the effects of using foam rollers or roller massagers to increase hamstrings flexibility in asymptomatic physically active adults. Four randomized controlled trials were included; 2 studies provided level 2 or 3 evidence regarding foam rollers and 2 studies provided level 2 or 3 evidence regarding roller massagers. Both roller-massager studies reported increases in hamstrings flexibility after treatment. Data from the foam-roller studies did not demonstrate a statistically significant increase in hamstrings flexibility, but 1 study did demonstrate a strong effect size.

Clinical Bottom Line:

The reviewed moderate-quality studies support the use of roller massagers but provide limited evidence on the effectiveness of foam rolling to increase hamstrings flexibility in asymptomatic physically active adults. Flexibility gains may be improved by a longer duration of treatment and administration by a trained therapist. Gains appear to decline rapidly postrolling. Neither device has been shown to confer a therapeutic benefit superior to static stretching, and the effectiveness of these devices for preventing injury is unknown.

Strength of Recommendation:

Grade B evidence supports the use of roller massagers to increase hamstrings flexibility in asymptomatic physically active adults.

Restricted access

Vera L. Talis and Irina A Solopova

We investigated the development of postural reactions induced in standing subjects by Achilles tendon vibration. We compared vibratory reactions in 3 different conditions: normal standing, standing near support, and when the solid support being protracted forward changed the initial posture. Additional support for the back was placed at subject's sacral or shoulder level. In the easy standing condition, the postural vibration reaction consists of progressive backward upper body movement. When the body contacted the additional support on the sacral level during the vibratory reaction, the movement of the upper body continued in most of the subjects. This was accompanied by an increase of pressure on the toes. When the support was applied at the shoulder level, the body motion reversed its direction in half of the subjects. In this case, backward-forward oscillations occurred near the support. The initial change of body-support interaction did not influence the ensuing vibration reaction; namely the reaction was similar to that with the support near to the body at the sacral level. Our data demonstrate that the vibration-induced reaction is not a local reaction limited to one joint, but a complex postural synergy that involves both leg and trunk muscles and integrates the information from touch and pressure afferents of the upper body.

Restricted access

Harald Böhm, Gerald K. Cole, Gert-Peter Brüggemann and Hanns Ruder

The contribution of muscle in-series compliance on maximum performance of the muscle tendon complex was investigated using a forward dynamic computer simulation. The model of the human body contains 8 Hill-type muscles of the lower extremities. Muscle activation is optimized as a function of time, so that maximum drop jump height is achieved by the model. It is shown that the muscle series elastic energy stored in the downward phase provides a considerable contribution (32%) to the total muscle energy in the push-off phase. Furthermore, by the return of stored elastic energy all muscle contractile elements can reduce their shortening velocity up to 63% during push-off to develop a higher force due to their force velocity properties. The additional stretch taken up by the muscle series elastic element allows only m. rectus femoris to work closer to its optimal length, due to its force length properties. Therefore the contribution of the series elastic element to muscle performance in maximum height drop jumping is to store and return energy, and at the same time to increase the force producing ability of the contractile elements during push-off.

Restricted access

Pablo B. Costa, Eric D. Ryan, Trent J. Herda, Ashley A. Walter, Katherine M. Hoge and Joel T. Cramer

This study examined the acute effects of passive stretching on electromechanical delay (EMD), peak twitch force (PTF), rate of force development (RFD), and peak-to-peak M-wave (PPM) for the soleus muscle during evoked isometric plantar flexion muscle actions. Fourteen men (mean age ± SD = 21.2 ± 2.4 years; body mass = 80.0 ± 14.9 kg; height = 176.9 ± 7.2 cm) and 20 women (20.9 ± 2.5 years; 61.3 ± 8.9 kg; 165.3 ± 7.5 cm) volunteered for the study. Five single-square, supramaximal transcutaneous electrical stimuli (each separated by 5 s) were delivered to the tibial nerve before and after passive stretching. A time × gender interaction was observed for EMD, and the post hoc dependent-samples t tests indicated that EMD increased 4% for the women (p = .023), but not for the men (p = .191). There were no other stretching-related changes for PTF, RFD, or p-p M-wave for either the men or women (p > .05). These findings tentatively suggested that mechanical factors related to the stiffness of the muscle-tendon unit may contribute to the explanation for why stretching caused an acute increase in the EMD during evoked twitches in the women, but not in the men.

Restricted access

Christopher J. Hasson, Richard E.A. van Emmerik and Graham E. Caldwell

In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.

Restricted access

George Vagenas and Blaine Hoshizaki

The purpose of this study was to identify the kinematic characteristics of bilateral rearfoot asymmetry during heel–toe running under two experimental conditions: worn (broken-in) running shoes and new (standardized) running shoes. High-speed cinematography (150 fps) was used to film the lower limbs of four male runners in the frontal plane while running on a treadmill at their training pace. Six successive footfalls were analyzed for each subject and selected kinematical variables of the rearfoot function were calculated. Significant asymmetries were found in lower leg angle and Achilles tendon angle at touchdown and at maximum pronation. Total pronation and rearfoot angle were almost symmetric. The angular displacement graphs for the shank and foot revealed a distinct overall asymmetry between the lower limbs in both conditions. The mean values of the kinematical asymmetries were appreciably higher in the new shoe condition. It is proposed that the degree of these asymmetries is subject to changes due to injury, personal running style, and stability of the running shoe. Trends of bilateral dominance specific to rearfoot control in running were identified.

Restricted access

Tatiana G. Deliagina, Irina N. Beloozerova, Ludmila B. Popova, Mikhail G. Sirota, Harvey A. Swadlow, Gunnar Grant and Grigore N. Orlovsky

In this paper, we describe the postural activity in sitting rats and rabbits. An animal was positioned on the platform that could be tilted in the frontal plane for up to ±20-30°, and postural corrections were video recorded. We found that in both rat and rabbit, the postural reactions led to stabilization of the dorsal-side-up trunk orientation. The result of this was that the trunk tilt constituted only ~50% (rat) and 25% (rabbit) of the platform tilt. In addition, in the rabbit the head orientation was also stabilized. Trunk stabilization persisted in the animals subjected to the bilateral labyrinthectomy and blindfolding, suggesting that the somatosensory input is primarily responsible for trunk stabilization. Trunk stabilization was due to extension of the limbs on the side moving down, and flexion of the opposite limbs. EMG recordings showed that the limb extension was caused by the active contraction of extensor muscles. We argue that signals from the Golgi tendon organs of the extensor muscles may considerably contribute to elicitation of postural corrective responses to the lateral tilt.