Search Results

You are looking at 111 - 120 of 269 items for :

Clear All
Restricted access

Jerry A. Frentsos and Janine T. Baer

Dietary habits were evaluated in 6 elite triathletes (4 male, 2 female). Analysis of 7-day diet records showed mean daily energy and carbohydrate intake to be insufficient to support estimated requirements. Mean intakes of vitamins and most minerals exceeded the Recommended Dietary Allowances (RDAs) except zinc and chromium, which did not meet 66% of recommended amounts. Individualized nutrition intervention using the Diabetic Food Exchange System to support performance during training and competition was provided. To improve dietary intake, subjects consumed fortified nutrition supplements (Reliv, Inc.) before and after daily training. Follow-up 7-day diet records showed that average energy intake and percentage of energy from carbohydrate increased, as did intakes of zinc and chromium. Triathletes' performance in a short course triathlon was improved compared to a similar competition completed prior to the nutrition intervention. Following the intervention, triathletes were able to meet recommended daily energy, macronutrient, and micronutrient intakes and improve endurance performance.

Restricted access

Elizabeth Applegate

Athletes use a variety of nutritional ergogenic aids to enhance performance. Most nutritional aids can be categorized as a potential energy source, an anabolic enhancer, a cellular component, or a recovery aid. Studies have consistently shown that carbohydrates consumed immediately before or after exercise enhance performance by increasing glycogen stores and delaying fatigue. Protein and amino acid supplementation may serve an anabolic role by optimizing body composition crucial in strength-related sports. Dietary antioxidants, such as vitamins C and E and carotenes, may prevent oxidative stress that occurs with intense exercise. Performance during high-intensity exercise, such as sprinting, may be improved with short-term creatine loading, and high-effort exercise lasting 1-7 min may be improved through bicarbonate loading immediately prior to activity. Caffeine dosing before exercise delays fatigue and may enhance performance of high-intensity exercise.

Restricted access

Eleni Michopoulou, Alexandra Avloniti, Antonios Kambas, Diamanda Leontsini, Maria Michalopoulou, Symeon Tournis and Ioannis G. Fatouros

This study determined dietary intake and energy balance of elite premenarcheal rhythmic gymnasts during their preseason training. Forty rhythmic gymnasts and 40 sedentary age-matched females (10–12 yrs) participated in the study. Anthropometric profile and skeletal ages were determined. Dietary intake and physical activity were assessed to estimate daily energy intake, daily energy expenditure, and resting metabolic rate. Groups demonstrated comparable height, bone age, pubertal development, resting metabolic rate. Gymnasts had lower body mass, BMI, body fat than age-matched controls. Although groups demonstrated comparable daily energy intake, gymnasts exhibited a higher daily energy expenditure resulting in a daily energy deficit. Gymnasts also had higher carbohydrate intake but lower fat and calcium intake. Both groups were below the recommended dietary allowances for fiber, water, calcium, phosphorus and vitamin intake. Gymnasts may need to raise their daily energy intake to avoid the energy deficit during periods of intense training.

Restricted access

Miguel David Ferrer, Pedro Tauler, Antoni Sureda, Pedro Pujol, Franchec Drobnic, Josep Antoni Tur and Antoni Pons

Soccer-associated oxidative stress has barely been studied. The aims of this study were to establish the effect of a soccer training match and the effect of a diet supplementation with a multivitamin complex and coenzyme Q during 3 months of soccer training on the pro-oxidant and antioxidant status of lymphocytes. In a randomized, double-blind trial, 19 male preprofessional soccer players were treated with either an antioxidant nutrient cocktail or placebo for 90 days. After this period the athletes played a soccer match lasting 60 min. All determinations were made under basal conditions before and after the training period and after the match. Basal lymphocyte hydrogen peroxide (H2O2) production did not change after the 3 months of training. Catalase activity decreased (about 50%) after the 3 months, whereas glutathione reductase increased its activity (150–200%) both with placebo and in the supplemented group. Basal ascorbate levels were maintained during the training period, whereas α-tocopherol and MDA decreased (about 40%) in both groups. The match increased H2O2 production (180%) in both groups when the lymphocytes were stimulated with phorbol myristate acetate, and it also increased MDA levels (150%). Antioxidant enzyme activities and antioxidant vitamin levels were maintained before and after the match. Regular soccer training modifies the lymphocyte strategy to eliminate ROS and increases protection against oxidative damage. A friendly soccer match raises lymphocyte capacity to produce ROS and oxidative damage, but it is not enough to induce a defensive response, thus leading to a situation of postexercise oxidative stress. Supplementation with low doses of antioxidant vitamins and coenzyme Q does not modify the endogenous antioxidant response to training.

Restricted access

Marina Nikić, Željko Pedišić, Zvonimir Šatalić, Saša Jakovljević and Danielle Venus

Purpose:

The aim of this study was to assess the nutrient intakes of elite junior basketball players in comparison with nonathletes.

Methods:

A previously designed food frequency questionnaire was undertaken by 57 male elite junior basketball players 15 to 16 years of age and 53 nonathlete peers.

Results:

Mean estimated energy intake was more than 700 kcal higher in basketball players than in the nonathletes (p = .002). In both groups estimated energy intake was ~14% from protein, 38% from fat, and ~48% from carbohydrates. For the basketball players, estimated protein intake was below 1.4 g/kg in 32% of the group and above 1.7 g/kg in 51%, while carbohydrate intake was below 6 g/kg in 56%. Percentages of participants who apparently failed to meet the estimated average requirement for micronutrients were higher in the nonathlete group. The nutrients most likely to fail to meet the recommendations for nutrient density were vitamin A (~70%), zinc (49% in basketball players and 30% in nonathletes), niacin and calcium (~30% for both micronutrients in both groups).

Conclusion:

Within the limitations of the survey methodology, elite junior basketball players appear to consume higher absolute energy, macronutrient and micronutrient intakes than nonathletes, but the contribution of macronutrients to daily energy intake and the nutrient density of food choices was similar for both groups. Elite junior basketball players might benefit from nutrition education targeting carbohydrate and protein intake. Dietary modifications that increase intakes of vitamin A, zinc, calcium and niacin in the diets of both groups might also be of value.

Restricted access

Andrea J. Braakhuis, Will G. Hopkins and Timothy E. Lowe

The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance.

Purpose:

To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes.

Methods:

Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization.

Results:

With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (−.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24).

Conclusion:

Training status correlates more strongly with antioxidant status than diet does.

Restricted access

Andrea J. Braakhuis, Kelly Meredith, Gregory R. Cox, William G. Hopkins and Louise M. Burke

A routine activity for a sports dietitian is to estimate energy and nutrient intake from an athlete’s self-reported food intake. Decisions made by the dietitian when coding a food record are a source of variability in the data. The aim of the present study was to determine the variability in estimation of the daily energy and key nutrient intakes of elite athletes, when experienced coders analyzed the same food record using the same database and software package. Seven-day food records from a dietary survey of athletes in the 1996 Australian Olympic team were randomly selected to provide 13 sets of records, each set representing the self-reported food intake of an endurance, team, weight restricted, and sprint/power athlete. Each set was coded by 3–5 members of Sports Dietitians Australia, making a total of 52 athletes, 53 dietitians, and 1456 athlete-days of data. We estimated within- and between- athlete and dietitian variances for each dietary nutrient using mixed modeling, and we combined the variances to express variability as a coefficient of variation (typical variation as a percent of the mean). Variability in the mean of 7-day estimates of a nutrient was 2- to 3-fold less than that of a single day. The variability contributed by the coder was less than the true athlete variability for a 1-day record but was of similar magnitude for a 7-day record. The most variable nutrients (e.g., vitamin C, vitamin A, cholesterol) had ~3-fold more variability than least variable nutrients (e.g., energy, carbohydrate, magnesium). These athlete and coder variabilities need to be taken into account in dietary assessment of athletes for counseling and research.

Restricted access

Manfred Lamprecht, Peter Hofmann, Joachim F. Greilberger and Guenther Schwaberger

Purpose:

To assess the effects of an encapsulated antioxidant concentrate (EAC) and exercise on lipid peroxidation (LIPOX) and the plasma antioxidant enzyme glutathione peroxidase (Pl-GPx).

Methods:

Eight trained male cyclists (VO2max > 55 ml · kg−1 · min−1) participated in this randomized, placebo-controlled, double-blinded, crossover study and undertook 4 cycle-ergometer bouts: 2 moderate exercise bouts over 90 min at 45% of individual VO2max and 2 strenuous exercise bouts at 75% of individual VO2max for 30 min. The first 2 exercise tests—1 moderate and 1 strenuous—were conducted after 4 weeks wash-out and after 12 and 14 days of EAC (107 IU vitamin E, 450 mg vitamin C, 36 mg β-carotene, 100 μg selenium) or placebo treatment. After another 4 weeks wash-out, participants were given the opposite capsule treatment and repeated the 2 exercise tests. Physical exercise training was equal across the whole study period, and nutrition was standardized by a menu plan the week before the tests. Blood was collected before exercise, immediately postexercise, and 30 min and 60 min after each test. Plasma samples were analyzed for LIPOX marker malondialdehyde (MDA) and the antioxidant enzyme pl-GPx.

Results:

MDA concentrations were significantly increased after EAC supplementation at rest before exercise and after moderate exercise (p < .05). MDA concentrations showed no differences between treatments after strenuous exercise (p > .1). Pl-GPx concentrations decreased at all time points of measurement after EAC treatment (p < .05).

Conclusions:

The EAC induced an increase of LIPOX as indicated by MDA and decreased pl-GPx concentrations pre- and postexercise.

Restricted access

John L. Ivy, Lynne Kammer, Zhenping Ding, Bei Wang, Jeffrey R. Bernard, Yi-Hung Liao and Jungyun Hwang

Context:

Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.

Purpose:

The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.

Methods:

The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.

Results:

Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.

Conclusion:

These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.

Restricted access

Mayur K. Ranchordas, Laurent Bannock and Scott L. Robinson

Professional soccer players are exposed to large amounts of physiological and psychological stress, which can increase infection risk and threaten availability for training and competition. Accordingly, it is important for practitioners to implement strategies that support player well-being and prevent illness. This case study demonstrates how a scientifically supported and practically applicable nutrition and lifestyle strategy can reduce infection incidence in an illness-prone professional soccer player. In the 3 months before the intervention, the player had 3 upper-respiratory tract infections (URTIs) and subsequently missed 3 competitive matches and 2 weeks’ training. He routinely commenced morning training sessions in the fasted state and was estimated to be in a large daily energy deficit. Throughout the 12-week intervention, the amount, composition, and timing of energy intake was altered, quercetin and vitamin D were supplemented, and the player was provided with a daily sleep and hygiene protocol. There was a positive increase in serum vitamin D 25(OH) concentration from baseline to Week 12 (53 n·mol-1 to 120 n·mol-1) and salivary immunoglobulin-A (98 mg·dl-1 to 135 mg·dl-1), as well as a decline in the number of URTI symptoms (1.8 ± 2.0 vs. 0.25 ± 0.5 for Weeks 0–4 and Weeks 8–12, respectively). More important, he maintained availability for all training and matches over the 12-week period. We offer this case study as a real-world applied example for other players and practitioners seeking to deploy nutrition and lifestyle strategies to reduce risk of illness and maximize player availability.