Search Results

You are looking at 121 - 130 of 559 items for :

  • "anaerobic" x
Clear All
Restricted access

Justine J. Reel, Sonya SooHoo, Holly Doetsch, Jennifer E. Carter and Trent A. Petrie

The purpose of the study was to determine prevalence rates of the female athlete triad (Triad), differences by sport category (aesthetic, endurance, and team/anaerobic), and the relationship between each of the components of the Triad. Female athletes (N= 451) from three Division I universities with an average age of 20 years completed the Menstrual History Questionnaire, Injury Assessment Questionnaire, and the Questionnaire for Eating Disorder Diagnoses (Q-EDD; Mintz, O’Halloran, Mulholland, & Schneider, 1997). Almost 7% of female athletes reported clinical eating disorders, and 19.2% reported subclinical disordered eating. Disordered eating was prevalent in all three sport categories with no significant differences between groups. Muscle injuries were more prevalent in team/anaerobic sports (77.4%) than the aesthetic (68.1%) and endurance groups (58.1%). Furthermore, those athletes with menstrual dysfunction more frequently reported clinical eating disorders (1.4%) and sustained more skeletal injuries (51%) during their athletic career than athletes with regular menstrual function. Clinical implications and further research directions are addressed.

Restricted access

Kelly de Jesus, Ross Sanders, Karla de Jesus, João Ribeiro, Pedro Figueiredo, João P. Vilas-Boas and Ricardo J. Fernandes

Background:

Coaches are often challenged to optimize swimmers’ technique at different training and competition intensities, but 3-dimensional (3D) analysis has not been conducted for a wide range of training zones.

Purpose:

To analyze front-crawl 3D kinematics and interlimb coordination from low to severe swimming intensities.

Methods:

Ten male swimmers performed a 200-m front crawl at 7 incrementally increasing paces until exhaustion (0.05-m/s increments and 30-s intervals), with images from 2 cycles in each step (at the 25- and 175-m laps) being recorded by 2 surface and 4 underwater video cameras. Metabolic anaerobic threshold (AnT) was also assessed using the lactate-concentration–velocity curve-modeling method.

Results:

Stroke frequency increased, stroke length decreased, hand and foot speed increased, and the index of interlimb coordination increased (within a catch-up mode) from low to severe intensities (P ≤ .05) and within the 200-m steps performed above the AnT (at or closer to the 4th step; P ≤ .05). Concurrently, intracyclic velocity variations and propelling efficiency remained similar between and within swimming intensities (P > .05).

Conclusions:

Swimming intensity has a significant impact on swimmers’ segmental kinematics and interlimb coordination, with modifications being more evident after the point when AnT is reached. As competitive swimming events are conducted at high intensities (in which anaerobic metabolism becomes more prevalent), coaches should implement specific training series that lead swimmers to adapt their technique to the task constraints that exist in nonhomeostatic race conditions.

Restricted access

Christine L. Wells and Steven P. Hooker

Physiological variables identified as important factors in athletic performance are discussed in relation to the spinal cord injured (SCI) athlete. These include body composition, pulmonary function, cardiorespiratory efficiency, muscular strength and endurance, and anaerobic power. SCI athletes are less fat and have a larger lean body mass than nonathletes, and male SCI are less fat than female SCI. Static lung volumes are usually below normal values in SCI subjects, but athletic SCI subjects tend to have higher values than sedentary SCI. Sedentary SCI subjects have lower aerobic power (O2max) than the general able-bodied (AB) sedentary population on tests of arm cranking or wheelchair ergometry. Low-lesion paraplegics generally achieve O2max values comparable to AB subjects. O2max is inversely related to level of injury, that is, the higher the SCI, the lower the O2max. However, elite SCI athletes are capable of achieving very high levels of O2max during arm exercise. SCI subjects respond well to strength and muscular endurance training. Paraplegic subjects achieve higher anaerobic power scores than quadriplegic subjects. Increases in O2max occur at about the same magnitude as in AB subjects. The required intensity level appears to be about 70–80% of maximal heart rate reserve.

Restricted access

Tatiane Gorski, Thomas Rosser, Hans Hoppeler and Michael Vogt

Purpose:

To describe the development of anthropometric and physical characteristics of young Swiss alpine skiers between 2004 and 2011, to compare them between age and performance-level groups, and to identify age- and sex-dependent reference values for the tests performed.

Methods:

The Swiss-Ski Power Test includes anthropometric measures and physical tests for coordination and speed, strength, anaerobic capacity, and endurance. The authors analyzed the results of 8176 tests performed by 1579 male and 1109 female alpine skiers between 2004 and 2011. Subjects ranged between regional and national level of performance and were grouped according to their competition age groups (U12, 11 y; U14, 12–13 y; U16, 14–15 y; U18, 16–17 y; U21, 18–20 y) and performance level.

Results:

A progressive increase in anthropometric measures and improvements in tests results with increasing age were found. For all tests, male athletes had better results than female athletes. Minor differences were observed in anthropometric characteristics between 2004 and 2011 (mostly <5%), while results of physical and coordinative tests showed significant improvements (up to more than 50% enhancement) or stability over the years. Differences between higher- and lower-level athletes were more pronounced in tests for lower-limb strength and anaerobic capacity.

Conclusions:

The presented profile of young Swiss alpine skiers highlights the improvements in different physical aspects along the maturation process and chronologically over a period of 7 y. Furthermore, reference values are provided for comparisons with alpine skiers or athletes from other sports.

Restricted access

Josely C. Koury, Astrogildo V. de Oliveira Jr., Emílson S. Portella, Cyntia F. de Oliveira, Gustavo C. Lopes and Carmen M. Donangelo

The purpose of this study was lo compare zinc and copper biochemical indices of antioxidant status and their relationship in elite athletes of different modalities: aerobic with high-impact (triathletes, n = 10 and long-distance runners, n = 12), anaerobic with high-impact (short-distance runners, n = 9), and anaerobic with low-impact (short-distance swimmers, n = 13). The influence of recent dietary intake and body composition was also evaluated. A venous blood sample was drawn 16-20 hr after competition for the following measurements: packed-cell volume and hemoglobin in blood; copper and zinc in plasma and erythrocytes; ceruloplasmin in plasma; superoxide dismutase activity and metal-lothionein in erythrocyles; and erythrocyte osmotic fragility. Zinc and copper intakes were not different in the athlete groups and did not affect the biochemical indices measured. Athletes of the long-distance high-impact aerobic modalities had higher indices of antioxidant protection (erythrocyte zinc, superoxide dismutase activity, and metallothionein) than those of the short-distance low-impact modalities, suggesting that there is adaptation of the antioxidant capacity to the specific training. Significant correlations were observed in all athletes between erythrocyte zinc, superoxide dismutase activity, and metallothionein consistent with the importance of an adequate zinc status in the response of antioxidant mechanisms to intense exercise.

Restricted access

Rachel A. Hildebrand, Bridget Miller, Aric Warren, Deana Hildebrand and Brenda J. Smith

Increasing evidence indicates that compromised vitamin D status, as indicated by serum 25-hydroxyvitamin D (25-OH D), is associated with decreased muscle function. The purpose of this study was to determine the vitamin D status of collegiate athletes residing in the southern U.S. and its effects on muscular strength and anaerobic power. Collegiate athletes (n = 103) from three separate NCAA athletic programs were recruited for the study. Anthropometrics, vitamin D and calcium intake, and sun exposure data were collected along with serum 25-OH D and physical performance measures (Vertical Jump Test, Shuttle Run Test, Triple Hop for Distance Test and the 1 Repetition Maximum Squat Test) to determine the influence of vitamin D status on muscular strength and anaerobic power. Approximately 68% of the study participants were vitamin D adequate (>75 nmol/L), whereas 23% were insufficient (75–50 nmol/L) and 9%, predominantly non-Caucasian athletes, were deficient (<50 nmol/L). Athletes who had lower vitamin D status had reduced performance scores (p < .01) with odds ratios of 0.85 on the Vertical Jump Test, 0.82 on the Shuttle Run Test, 0.28 on the Triple Hop for Distance Test, and 0.23 on the 1 RM Squat Test. These findings demonstrate that even NCAA athletes living in the southern US are at risk for vitamin D insufficiency and deficiency and that maintaining adequate vitamin D status may be important for these athletes to optimize their muscular strength and power.

Restricted access

Jason D. Vescovi, Teena M. Murray and Jaci L. VanHeest

Purpose:

The primary purpose of this study was to determine whether positional profiling is possible for elite ice hockey players by examining anthropometric characteristics and physiological performance. In addition, performance ranges and percentiles were determined for each position (forwards, defensemen, and goalkeepers) on all dependent variables.

Methods:

A retrospective, cross-sectional study design was used with performance data from ice hockey players (mean age = 18.0 ± 0.6 years) attending the 2001 (n = 74), 2002 (n = 84), and 2003 (n = 92) Combines. Four anthropometric characteristics and 12 performance tests were the dependent variables. A 3 × 3 (position × year) 2-way ANOVA was used to determine whether any significant interactions were present. No significant interactions were observed, so the data were collapsed over the 3-year period and positional characteristics were analyzed using a 1-way ANOVA.

Results:

Defenders were heavier and/or taller compared with the other 2 positions (P ≤ .01), whereas goalkeepers showed greater body-fat percentage compared with that of forwards (P = .001). It was found that goalkeepers had significantly lower strength measures for the upper body (P ≤ .043) and lower anaerobic capacity (P ≤ .039) values compared with at least one other position, but they had greater flexibility (P ≤ .013). No positional differences were observed for the broad jump, vertical jump, aerobic power, or curl-ups.

Conclusion:

The current findings provide evidence supporting the use of anthropometric measurements, upper body strength, and anaerobic capacity to effectively distinguish among positions for elite-level ice hockey players.

Restricted access

Mark A. Tarnopolsky and Dan P. MacLennan

Creatine monohydrate supplementation has been shown to enhance high-intensity exercise performance in some but not all studies. Part of the controversy surrounding the ergogenic effect(s) of creatine monohydrate supplementation may relate to design issues that result in low statistical power. A further question that remains unresolved in the creatine literature is whether or not males and females respond in a similar manner to supplementation. We studied the effect of creatine supplementation upon high intensity exercise performance in 24 subjects (n = 12 males, n = 12 females). Creatine monohydrate (Cr; 5g, 4x/d × 4d) and placebo (PI; glucose polymer × 4d) were provided using a randomized. double-blind crossover design (7 week washout). Outcome measures included: 2 × 30-S anaerobic cycle lest, with plasma lactate pre- and post-test; dorsi-flexor: maximal voluntary contraction (MVC), 2-min fatigue test, and electrically stimulated peak and tetanic torque; isokinetic knee extension torque and I -min ischeniic handgrip strength. Significant main effects of Cr treatment included: increased peak and relative peak anaerobic cycling power (↑3.7%; p < .05), dorsi-flexion MVC torque (↑6.6% p < .05), and increased lactate (↑20.8%; p < .05) with no gender specific responses. We concluded that short-term Cr supplementation can increase indices of high-intensity exercise performance for both males and females.

Restricted access

Philip Davis, Renate M. Leithäuser and Ralph Beneke

The energy expenditure of amateur boxing is unknown.

Purpose:

Total metabolic cost (Wtot) as an aggregate of aerobic (Waer), anaerobic lactic (W[lactate]), and anaerobic alactic (WPCr) energy of a 3 × 2-min semicontact amateur boxing bout was analyzed.

Methods:

Ten boxers (mean ± SD [lower/upper 95% confidence intervals]) age 23.7 ± 4.1 (20.8/26.6) y, height 180.2 ± 7.0 (175.2/185.2) cm, body mass 70.6 ± 5.7 (66.5/74.7) kg performed a semicontact bout against handheld pads created from previously analyzed video footage of competitive bouts. Net metabolic energy was calculated using respiratory gases and blood [lactate].

Results:

Waer, 526.0 ± 57.1 (485.1/566.9) kJ, was higher (P < .001) than WPCr, 58.1 ± 13.6 (48.4/67.8) kJ. W[lactate], 26.2 ± 7.1 (21.1/31.3) kJ, was lower (P < .001) than Waer and WPCr. An ~70-kJ fraction of the aerobic energy expenditure reflects rephosphorylation of high-energy phosphates during the breaks between rounds, which elevated Wtot to ~680 kJ with relative contributions of 77% Waer, 19% WPCr, and 4% W[lactate].

Conclusions:

The results indicate that the metabolic profile of amateur boxing is predominantly aerobic. They also highlight the importance of a highly developed aerobic capacity as a prerequisite of a high activity rate during rounds and recovery of the high-energy phosphate system during breaks as interrelated requirements of successful boxing.

Restricted access

Alessandro Moura Zagatto, Jorge Vieira de Mello Leite, Marcelo Papoti and Ralph Beneke

Purpose:

To test the hypotheses that the metabolic profile of table tennis is dominantly aerobic, anaerobic energy is related to the accumulated duration and intensity of rallies, and activity and metabolic profile are interrelated with the individual fitness profile determined via table tennis–specific tests.

Methods:

Eleven male experienced table tennis players (22 ± 3 y, 77.6 ± 18.9 kg, 177.1 ± 8.1 cm) underwent 2 simulated table tennis matches to analyze aerobic (WOXID) energy, anaerobic glycolytic (WBLC) energy, and phosphocreatine breakdown (WPCr); a table tennis–specific graded exercise test to measure ventilatory threshold and peak oxygen uptake; and an exhaustive supramaximal table tennis effort to determine maximal accumulated deficit of oxygen.

Results:

WOXID, WBLC, and WPCr corresponded to 96.5% ± 1.7%, 1.0% ± 0.7%, and 2.5% ± 1.4%, respectively. WOXID was interrelated with rally duration (r = .81) and number of shots per rally (r = .77), whereas match intensity was correlated with WPCr (r = .62) and maximal accumulated oxygen deficit (r = .58).

Conclusions:

The metabolic profile of table tennis is predominantly aerobic and interrelated with the individual fitness profile determined via table tennis–specific tests. Table tennis–specific ventilatory threshold determines the average oxygen uptake and overall WOXID, whereas table tennis–specific maximal accumulated oxygen deficit indicates the ability to use and sustain slightly higher blood lactate concentration and WBLC during the match.