Search Results

You are looking at 121 - 130 of 493 items for :

Clear All
Restricted access

Roy L.P.G. Jentjens and Asker E. Jeukendrup

Pre-exercise carbohydrate feeding may result in rebound hypoglycemia in some but not all athletes. The aim of the present study was to examine whether insulin sensitivity in athletes who develop rebound hypoglycemia is higher compared with those who do not show rebound hypoglycemia. Twenty trained athletes (V̇O2max of 61.8 ± 1.4 ml · kg−1 · min−1) performed an exercise trial on a cycle ergometer. Forty-five minutes before the start of exercise, subjects consumed 500 ml of a beverage containing 75 g of glucose. The exercise trial consisted of · 20 min of submaximal exercise at 74 ± 1% V̇O2max immediately followed by a time trial. Based upon the plasma glucose nadir reached during submaximal exercise, subjects were assigned to a Hypo group (<3.5 mmol/L) and a Non-hypo group (≥3.5 mmol/L). An oral glucose tolerance test was performed to obtain an index of insulin sensitivity (ISI). The plasma glucose nadir during submaximal exercise was significantly lower (p < .01) in the Hypo-group (n = 10) compared with the Non-hypo group (n = 10) (2.7 ± 0.1 vs. 4.1 ± 0.2 mmol/L, respectively). No difference was found in ISI between the Hypo and the Non-hypo group (3.7 ± 0.4 vs. 3.8 ± 0.5, respectively). The present results suggest that insulin sensitivity does not play an important role in the occurrence of rebound hypoglycemia.

Restricted access

Cynthia M. Ferrara, Susan H. McCrone, David Brendle, Alice S. Ryan and Andrew P. Goldberg

The metabolic changes associated with the addition of 4 months of resistive exercise to an existing aerobic exercise program (AEX+RT, n = 7) were compared to a maintenance aerobic exercise program (AEX, n = 8) in overweight, older men. The subjects in this study had recently completed a 6-month aerobic exercise program (treadmill walking, 45 min/d, 2 d/wk). The AEX+RT group added 6 exercises on upper- and lower-body pneumatic-resistance machines (2 sets, 15 repetitions each, 2 d/wk) to an aerobic exercise program at ≥ 70% heart rate reserve for 30–40 min, 2 d/wk on treadmill, while the AEX group continued the same maintenance treadmill AEX program. There were no baseline differences in body weight, VO2max, or glucose metabolism between groups. The AEX+RT group increased upper- and lower-extremity strength by 28 ± 4% and 46 ± 6%, respectively (p < .05), despite a 9% decrease in VO2max (p < .05). VO2max did not change in the AEX group. There was no change in the fasting glucose or insulin levels, or the 3-h glucose responses to an oral glucose load in either group. The insulin responses decreased by 25 ± 4% in the AEX+RT group (p < .01) but did not change in the AEX group. In conclusion, the addition of resistive exercise training to an existing aerobic exercise program may improve insulin sensitivity in overweight, older men, and thus prevent the development of type 2 diabetes.

Restricted access

Meredith C. Peddie, Claire Cameron, Nancy Rehrer and Tracy Perry

Background:

Interrupting sedentary time induces improvements in glucose metabolism; however, it is unclear how much activity is required to reduce the negative effects of prolonged sitting.

Methods:

Sixty-six participants sat continuously for 9 hours except for required bathroom breaks. Participants were fed meal replacement beverages at 60, 240 and 420 min. Blood samples were obtained hourly for 9 hours, with additional samples collected 30 and 45 min after each feeding. Responses were calculated as incremental area under the curve (iAUC) for plasma glucose, insulin and triglyceride. Participants wore a triaxial accelerometer and a heart rate monitor. Energy expenditure was estimated using indirect calorimetry.

Results:

After controlling for age, sex and BMI, every 100 count increase in accelerometer derived total movement was associated with a 0.06 mmol·L-1·9 hours decrease in glucose iAUC (95% CI 0.004–0.1; P = .035), but not associated with changes in insulin or triglyceride iAUC. Every 1 bpm increase in mean heart rate was associated with a 0.76 mmol·L-1·9 hours increase in triglyceride iAUC (95% CI 0.13–1.38).

Conclusion:

Accelerometer measured movement during periods of prolonged sitting can result in minor improvements in postprandial glucose metabolism, but not lipid metabolism.

Restricted access

Trent Stellingwerff, Jean-Philippe Godin, Maurice Beaumont, Aude Tavenard, Dominik Grathwohl, Peter J. van Bladeren, Anne-France Kapp, Johannes le Coutre and Sami Damak

Recent studies have demonstrated a direct link between increased exogenous CHO oxidation (CHOexog) and enhanced performance. The limiting factor for CHOexog appears to be at the level of intestinal transporters, with sodium/glucose cotransporter 1 (SGLT1) and glucose transporter Type 5 (GLUT5) responsible for glucose and fructose transport, respectively. Studies in animal models have shown that SGLT1 and intestinal glucose uptake are up-regulated by high carbohydrate diets or noncaloric sweeteners. The aim of this study was to determine the effect of preexercise ingestion of noncaloric sweeteners on CHOexog during exercise in athletes. In a randomized, crossover, double-blind fashion twenty-three healthy male cyclists (age = 29 ± 7yrs, mass = 73.6 ± 7.4kg, VO2peak = 68.3 ± 9.3 ml/kg/min) consumed 8 × 50ml doses of either placebo (CON) or 1mM sucralose (SUCRA) every 15 min starting 120 min before the onset of exercise. This was followed by 2h of cycling at 48.5 ± 8.6% of VO2peak with continual ingestion of a maltodextrin drink (1.2g/min; 828ml/hr). Average CHOexog during the first hour of exercise did not differ between SUCRA and CON conditions (0.226 ± 0.081 g/min vs. 0.212 ± 0.076 g/min, Δ =0.015 g/min, 95%CI -0.008 g/min, 0.038 g/min, p = .178). Blood glucose, plasma insulin and lactate, CHO and fat substrate utilization, heart rate, ratings of perceived exertion, and gastrointestinal symptoms did not differ between conditions. Our data suggest that consumption of noncaloric sweeteners in the immediate period before exercise does not lead to a significant increase in CHOexog during exercise.

Restricted access

Chia-Lin Li, Feng-Hsuan Liu and Jen-Der Lin

The purpose of this prospective study was to examine the effect of physical activity independent of obesity on metabolic risk factors. A total of 358 participants were recruited from the Department of Health Management of Chang Gung Medical Center. Physical activity was assessed using a 3-d activity record. Body-mass index (BMI) and metabolic risk factors were also assessed. Our findings demonstrate that an effect of obesity that was statistically independent of the levels of physical activity is associated with metabolic risk factors. Moreover, physical activity displayed inverse associations with triglycerides, and fasting plasma glucose and a positive association with HDL cholesterol. Those participants with time spent in moderate activity more than 0.5 h each day had significantly less risk of high fasting glucose. Significantly, these associations were independent of BMI.

Restricted access

Amanda Claassen, Estelle V. Lambert, Andrew N. Bosch, Ian M. Rodger, Alan St. Clair Gibson and Timothy D. Noakes

The impact of altered blood glucose concentrations on exercise metabolism and performance after a low carbohydrate (CHO) diet was investigated. In random order, 1 wk apart, 9 trained men underwent euglycemic (CI) or placebo (PI) clamps, while performing up to 150 min of cycling at 70% VO2max, after 48 h on a low CHO diet. The range in improvement in endurance capacity with glucose infusion was large (28 ± 26%, P < 0.05). Fifty-six percent of subjects in CI failed to complete 150 min of exercise despite maintenance of euglycemia, while only 2 subjects in PI completed 150 min of exercise, despite being hypoglycemic. Total CHO oxidation remained similar between trials. Despite longer exercise times in CI, similar amounts of muscle glycogen were used to PI. Maintenance of euglycemia in the CHO-depleted state might have an ergogenic effect, however, the effect is highly variable between individuals and independent of changes in CHO oxidation.

Restricted access

Emma Stevenson, Clyde Williams, Maria Nute, Peter Swaile and Monica Tsui

The present study investigated the effect of the glycemic index of an evening meal on responses to a standard high glycemic index (HGI) breakfast the following morning. The metabolic responses to exercise 3 h after breakfast were also investigated. Seven active males completed 2 trials. In each trial, participants were provided with an evening meal on day 1, which was composed of either HGI or LGI (high or low glycemic index) carbohydrates. On day 2, participants were provided with a standard HGI breakfast and then performed a 60 min run at 65% VO2max 3 h later. Plasma glucose and serum insulin concentrations following breakfast were higher in the HGI trial compared to the LGI trial (P < 0.05). During exercise, there were no differences in substrate utilization. The results suggest that consuming a single LGI evening meal can improve glucose tolerance at breakfast but the metabolic responses to subsequent exercise were not affected.

Restricted access

Tzai-Li Li, Ching-Ling Wu, Michael Gleeson and Clyde Williams

The purpose of this study was to determine the effect of pre-exercise high carbohydrate meals with high glycemic index (HGI) or low glycemic index (LGI) on blood leukocyte redistribution during subsequent endurance exercise. Eight male subjects performed a 90-min run on a treadmill at 70% VO2max 3 h after ingesting an isocaloric HGI or LGI meal with GI values of 77 and 37, respectively. Blood counts of leukocytes, and neutrophils and the neutrophil/lymphocyte ratio were significantly lower in LGI than HGI at 90 min of exercise (P < 0.05). The plasma glucose concentrations were significantly higher in LGI than HGI between 15 min and 45 min of exercise. There were, however, no differences in plasma cortisol, growth hormone, and interleukin-6 concentrations between trials. Thus, the GI of a pre-exercise meal influences leukocyte trafficking and plasma glucose but has limited effects on circulating stress hormone and cytokine responses to exercise.

Restricted access

Andrea Di Blasio, Pascal Izzicupo, Emanuele D’Angelo, Sandra Melanzi, Ines Bucci, Sabina Gallina, Angela Di Baldassarre and Giorgio Napolitano

Purpose:

High-intensity aerobic interval training (AIT) has been reported to be more effective than continuous aerobic training (CoAT) to improve metabolic health. The aim of our study was to investigate whether moderate-intensity AIT is more effective than CoAT on metabolic health when applied to a walking training program.

Design/Methods:

Thirty-two postmenopausal women (55.37 ± 3.46 years) were investigated for body composition, plasma glucose, insulin, lipids, adiponectin, HOMA-IR, HOMA-AD, aerobic fitness, dietary habits, and spontaneous physical activity, and randomly assigned to one of two different walking training programs: CoAT or AIT.

Results:

CoAT and AIT elicited the same physiological benefits, including: reduction of plasma glucose, insulin, HOMA-IR and HOMA-AD, and increase of plasma HDL-C, adiponectin, and aerobic fitness.

Conclusions:

An AIT scheme as part of an outdoor walking training program elicits the same physiological adaptations as a CoAT scheme, probably because walking does not promote exercise intensities that elicit greater effects.

Restricted access

Krista Casazza, Barbara A. Gower, Amanda L. Willig, Gary R. Hunter and José R. Fernández

The objectives of this study were to identify the independent effect of physical activity and fitness on insulin dynamics in a cohort of European-, African-, and Hispanic-American children (n = 215) age 7–12 years and to determine if racial/ethnic differences in insulin dynamics could be statistically explained by racial/ethnic differences in physical activity or fitness. An intravenous glucose tolerance test and minimal modeling were used to derive the insulin sensitivity index (SI) and acute insulin response to glucose (AIRg). Fitness was assessed as VO2-170 and physical activity by accelerometer. Multiple regression models were tested for contributions of fitness and physical activity to SI and AIRg. Fitness was a stronger predictor of SI and AIRg than physical activity regardless of ethnicity; racial/ethnic differences in insulin dynamics were not accounted for by differences in fitness and/or physical activity.