Search Results

You are looking at 121 - 130 of 396 items for :

  • "physiologic responses" x
Clear All
Restricted access

Jocelyn K. Mara, Kevin G. Thompson and Kate L. Pumpa

Purpose:

To investigate the physical and physiological response to different formats of various-sided games.

Methods:

Eighteen elite women’s soccer players wore 15-Hz global positioning system devices and heart-rate (HR) monitors during various-sided games (small, 4 vs 4 and 5 vs 5; medium, 6 vs 6 and 7 vs 7; large, 8 vs 8 and 9 vs 9).

Results:

Players covered more relative sprinting distance during large-sided games than in small-sided (P < .001, d = 0.69) and medium-sided (P < .001, d = 0.54) games. In addition, a greater proportion of total acceleration efforts that had a commencement velocity <1 m/s were observed in small-sided games (44.7% ± 5.5%) than in large-sided games (36.7% ± 10.6%) (P = .018, d = 0.94). This was accompanied by a greater proportion of acceleration efforts with a final velocity equivalent to the sprint threshold in large-sided games (15.4% ± 7.7%) than in small-sided games (5.2% ± 2.5%) (P < .001, d = 1.78). The proportion of time spent in HR zone 4 (>85% maximum HR) was greater during small-sided games (69.8% ± 2.5%) than in medium- (62.1% ± 2.8%, d = 2.90) and large-sided games (54.9% ± 3.1%) (P < .001, d = 5.29).

Conclusions:

The results from this study demonstrate that coaches can use small-sided games as an aerobic conditioning stimulus and to develop players’ explosiveness and repeat-sprint ability over short durations. Large-sided games can be used to maintain aerobic capacity and develop maximum speed over longer distances.

Restricted access

Laura Capranica and Mindy L. Millard-Stafford

A prevailing theory (and practical application) is that elite performance requires early childhood skill development and training across various domains, including sport. Debate continues whether children specializing early (ie, training/competition in a single sport) have true advantage compared with those who sample various sports early and specialize in a single sport later (adolescence). Retrospective data and case studies suggest either model yields elite status depending upon the sport category (ie, situational: ball games, martial arts, fencing; quantitative: track and feld, swimming, skiing; or qualitative: gymnastics, diving, figure skating). However, potential risks of early specialization include greater attrition and adverse physical/emotional health outcomes. With the advent of the IOC Youth Olympic Games, increased emphasis on global youth competition has unknown implications but also represents a potential platform for investigation. Modification of youth competition formats should be based upon multidisciplinary research on psycho-physiological responses, and technical-tactical behaviors during competition. The assumption that a simple scaled-down approach of adult competitions facilitates the development of technical/tactical skills of youth athletes is not necessarily substantiated with field-based research. Relatively little evidence exists regarding the long-term effects of rigorous training and competitive schedules on children in specific sports. It is clear that more prospective studies are needed to understand the training dose that optimally develops adaptations in youth without inducing dropout, overtraining syndrome, and/or injury. Such an approach should be sport specific as well as gender based. Until such evidence exists, coaches and sport administrators will continue to rely upon their sport-specific dogma to influence programmatic development of our most vulnerable population.

Open access

Stephen Seiler and Øystein Sylta

The purpose of this study was to compare physiological responses and perceived exertion among well-trained cyclists (n = 63) performing 3 different high-intensity interval-training (HIIT) prescriptions differing in work-bout duration and accumulated duration but all prescribed with maximal session effort. Subjects (male, mean ± SD 38 ± 8 y, VO2peak 62 ± 6 mL · kg–1 · min–1) completed up to 24 HIIT sessions over 12 wk as part of a training-intervention study. Sessions were prescribed as 4 × 16, 4 × 8, or 4 × 4 min with 2-min recovery periods (8 sessions of each prescription, balanced over time). Power output, HR, and RPE were collected during and after each work bout. Session RPE was reported after each session. Blood lactate samples were collected throughout the 12 wk. Physiological and perceptual responses during >1400 training sessions were analyzed. HIIT sessions were performed at 95% ± 5%, 106% ± 5%, and 117% ± 6% of 40-min time-trial power during 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively, with peak HR in each work bout averaging 89% ± 2%, 91% ± 2%, and 94% ± 2% HRpeak. Blood lactate concentrations were 4.7 ± 1.6, 9.2 ± 2.4, and 12.7 ± 2.7 mmol/L. Despite the common prescription of maximal session effort, RPE and sRPE increased with decreasing accumulated work duration (AWD), tracking relative HR. Only 8% of 4 × 16-min sessions reached RPE 19–20, vs 61% of 4 × 4-min sessions. The authors conclude that within the HIIT duration range, performing at “maximal session effort” over a reduced AWD is associated with higher perceived exertion both acutely and postexercise. This may have important implications for HIIT prescription choices.

Restricted access

Kerry McGawley and Hans-Christer Holmberg

Purpose:

Cross-country-ski races place complex demands on athletes, with events lasting between approximately 3 min and 2 h. The aim of the current study was to compare the aerobic and anaerobic measures derived from a short time trial (TT) between male and female skiers using diagonal cross-country skiing.

Methods:

Twenty-four highly trained cross-country skiers (12 male and 12 female, age 17.4 ± 1.4 y, body mass 68.2 ± 8.9 kg, height 174 ± 8 cm) participated. The submaximal VO2–speed relationship and VO2max were derived from an incremental ramp test to exhaustion (RAMP), while the accumulated oxygen deficit (AOD), peak VO2, and performance time were measured during a 600-m TT.

Results:

The female skiers took longer to complete the TT than the males (209 ± 9 s vs 166 ± 7 s, P < .001) and exhibited a lower relative anaerobic contribution (20% ± 4% vs 24% ± 3%, P = .015) and a higher fractional utilization of VO2max (84% ± 4% vs 79% ± 5%, P = .007) than males. Although there was no significant difference in AOD between the sexes (40.9 ± 9.5 and 47.3 ± 7.4 mL/kg for females and males, respectively; P = .079), the mean difference ± 90% confidence intervals of 6.4 ± 6.0 mL/kg reflected a likely practical difference (ES = 0.72). The peak VO2 during the TT was significantly higher than VO2max during the RAMP for all participants combined (62.3 ± 6.8 vs 60.5 ± 7.2 mL · kg−1 · min−1, P = .011), and the mean difference ± 90% confidence intervals of 1.8 ± 1.1 mL · kg−1 · min−1 reflected a possible practical difference (ES = 0.25).

Conclusions:

These results show that performance and physiological responses to a self-paced TT lasting approximately 3 min differ between sexes. In addition, a TT may provide a valid measure of VO2max.

Restricted access

Sara Dean, Andrea Braakhuis and Carl Paton

Researchers have long been investigating strategies that can increase athletes’ ability to oxidize fatty acids and spare carbohydrate, thus potentially improving endurance capacity. Green-tea extract (epigallocatechin-3-gallate; EGCG) has been shown to improve endurance capacity in mice. If a green-tea extract can stimulate fat oxidation and as a result spare glycogen stores, then athletes may benefit through improved endurance performance. Eight male cyclists completed a study incorporating a 3-way crossover, randomized, placebo-controlled, double-blinded, diet-controlled research design. All participants received 3 different treatments (placebo 270 mg, EGCG 270 mg, and placebo 270 mg + caffeine 3 mg/kg) over a 6-day period and 1 hr before exercise testing. Each participant completed 3 exercise trials consisting of 60 min of cycling at 60% maximum oxygen uptake (VO2max) immediately followed by a self-paced 40-km cycling time trial. The study found little benefit in consuming green-tea extract on fat oxidation or cycling performance, unlike caffeine, which did benefit cycling performance. The physiological responses observed during submaximal cycling after caffeine ingestion were similar to those reported previously, including an increase in heart rate (EGCG 147 ± 17, caffeine 146 ± 19, and placebo 144 ± 15 beats/min), glucose at the 40-min exercise time point (placebo 5.0 ± 0.8, EGCG 5.4 ± 1.0, and caffeine 5.8 ± 1.0 mmol/L), and resting plasma free fatty acids and no change in the amount of carbohydrate and fat being oxidized. Therefore, it was concluded that green-tea extract offers no additional benefit to cyclists over and above those achieved by using caffeine.

Open access

Øyvind Sandbakk

validating or using technology to gain valuable insights into sport physiology and performance. Technology-driven digital solutions may provide knowledge beyond what standard measurements have previously allowed. Positioning systems, inertial movement units, and various sensors that measure physiological

Restricted access

Tatiane Piucco, Fernando Diefenthaeler, Rogério Soares, Juan M. Murias and Guillaume Y. Millet

become biomechanically or technically difficult to skate fast enough to fully challenge the cardiovascular system. 11 As an alternative, some researchers investigated physiological responses obtained during low walking on an oversized motor-driven treadmill, which simulated the posture used in speed

Restricted access

Achraf Ammar, Stephen J. Bailey, Omar Hammouda, Khaled Trabelsi, Nabil Merzigui, Kais El Abed, Tarak Driss, Anita Hökelmann, Fatma Ayadi, Hamdi Chtourou, Adnen Gharbi and Mouna Turki

bases of these potential surface-dependent effects on physical and technical components of football performance are poorly defined. Empirical research studies assessing physiological responses to exercise performed on AT compared with NG have yielded inconsistent findings. 3 Although higher blood

Restricted access

Diogo V. Leal, Lee Taylor and John Hough

detect alterations in the exercise-induced responses of these hormones as a consequence of intensified training period. To be of value in practice, this running 55/80 variant protocol must demonstrate reproducible hormone and physiological responses when participants are in a rested healthy state. The

Restricted access

Yusuf Köklü, Utku Alemdaroğlu, Hamit Cihan and Del P. Wong

-0838.2003.00353.x 10.1046/j.1600-0838.2003.00353.x 5. Köklü Y , A¸sçi A , Koçak FU , Alemdaroglu U , Dündar U . Comparison of the physiological responses to different small-sided games in elite young soccer players . J Strength Cond Res . 2011 ; 25 ( 6 ): 1522 – 1528 . doi:10.1519/JSC.0b013e3181e06