Search Results

You are looking at 121 - 130 of 486 items for :

  • "physiological responses" x
Clear All
Restricted access

Jocelyn K. Mara, Kevin G. Thompson and Kate L. Pumpa

Purpose:

To investigate the physical and physiological response to different formats of various-sided games.

Methods:

Eighteen elite women’s soccer players wore 15-Hz global positioning system devices and heart-rate (HR) monitors during various-sided games (small, 4 vs 4 and 5 vs 5; medium, 6 vs 6 and 7 vs 7; large, 8 vs 8 and 9 vs 9).

Results:

Players covered more relative sprinting distance during large-sided games than in small-sided (P < .001, d = 0.69) and medium-sided (P < .001, d = 0.54) games. In addition, a greater proportion of total acceleration efforts that had a commencement velocity <1 m/s were observed in small-sided games (44.7% ± 5.5%) than in large-sided games (36.7% ± 10.6%) (P = .018, d = 0.94). This was accompanied by a greater proportion of acceleration efforts with a final velocity equivalent to the sprint threshold in large-sided games (15.4% ± 7.7%) than in small-sided games (5.2% ± 2.5%) (P < .001, d = 1.78). The proportion of time spent in HR zone 4 (>85% maximum HR) was greater during small-sided games (69.8% ± 2.5%) than in medium- (62.1% ± 2.8%, d = 2.90) and large-sided games (54.9% ± 3.1%) (P < .001, d = 5.29).

Conclusions:

The results from this study demonstrate that coaches can use small-sided games as an aerobic conditioning stimulus and to develop players’ explosiveness and repeat-sprint ability over short durations. Large-sided games can be used to maintain aerobic capacity and develop maximum speed over longer distances.

Restricted access

Carlo Castagna, Lorenzo Francini, Susana C.A. Póvoas and Stefano D’Ottavio

Purpose:

To examine the acute effects of generic drills (running drills [RDs]) and specific (small-sided-games [SSGs]) long-sprint-ability (LSA) drills on internal and external load of male soccer players.

Methods:

Fourteen academy-level soccer players (mean ± SD age 17.6 ± 0.61 y, height 1.81 ± 0.63 m, body mass 69.53 ± 4.65 kg) performed four 30-s LSA bouts for maintenance (work:rest 1:2) and production (1:5) with RDs and SSGs. Players’ external load was tracked with GPS technology (20-Hz), and heart rate (HR), blood lactate concentration (BLc), and rating of perceived exertion (RPE) were used to characterize players’ internal load. Individual peak BLc was assessed with a 30-s all-out test on a nonmotorized treadmill (NMT).

Results:

Compared with SSGs, the RDs had a greater effect on external load and BLc (large and small, respectively). During SSGs players covered more distance with high-intensity decelerations (moderate to small). Muscular RPE was higher (small to large) in RDs than in SSGs. The production mode exerted a moderate effect on BLc while the maintenance condition elicited higher cardiovascular effects (small to large).

Conclusion:

The results of this study showed the superiority of generic over specific drills in inducing LSA-related physiological responses. In this regard production RDs showed the higher postexercise BLc. Individual peak blood lactate responses were found after the NMT 30-s all-out test, suggesting this drill as a valid option to RDs. The practical physiological diversity among the generic and specific LSA drills here considered enable fitness trainers to modulate prescription of RD and SSG drills for LSA according to training schedule.

Restricted access

Matt B. Brearley and James P. Finn

Background:

Despite the thermal challenge of demanding workloads performed in high cabin temperatures while wearing heavy heat-retardant clothing, information on physiological responses to racing V8 Supercars in hot conditions is not readily available.

Purpose:

To describe the thermal, cardiovascular, and perceptual strain on V8 Supercar drivers competing in hot conditions.

Methods:

Thermal strain was indicated by body-core temperature using an ingested thermosensitive pill. Cardiovascular strain was assessed from heart rate, hydration status, and sweat rate. Perceptual strain was estimated from self-rated thermal sensation, thermal discomfort (modified Gagge scales), perceived exertion (Borg scale), and perceptual strain index.

Results:

Prerace body-core temperatures were (mean ± SD) 37.7°C ± 0.4°C (range 37.0°C to 38.2°C), rising to 39.0°C ± 0.4°C (range 38.4°C to 39.7°C) postrace. Driver heart rates were >160 and >170 beats/min for 85.3% and 46.7% of racing, respectively. Sweat rates were 1.06 ± 0.12 L/h or 13.4 ± 1.2 mL · kg−1 · h−1, and postrace dehydration was 0.6% ± 0.6% of prerace body mass. Drivers rated thermal sensation as hot (10.3 ± 0.9), thermal discomfort as uncomfortable (3.1 ± 1.0), and perceived exertion as very hard to very, very hard (8.7 ± 1.7) after the races. Overall physiological and perceptual strain were 7.4 ± 1.0 and 7.1 ± 1.2, respectively.

Conclusions:

Despite the use of cooling, V8 Supercar drivers endure thermal, cardiovascular, and perceptual strain during brief driving bouts in hot conditions.

Restricted access

Maria Konstantaki, Edward Winter and Ian Swaine

Context:

Forward propulsion in freestyle swimming is predominantly achieved through arm action. Few studies have assessed the effects of arm training on arm power and swimming performance, yet there have not been any investigations on the effects of arms-only swimming training on swimming performance and physiological responses to arm exercise.

Purpose:

To investigate the changes in arms-only and full-stroke swimming performance, movement economy and aerobic power after an arms-only swimming training program.

Methods:

Fifteen male county level swimmers were assigned either to an experimental (ES, n = 8) or control group (CS, n = 7). For six weeks ES performed arms-only freestyle swimming exercises for 20% of their weekly training distance three times per week, whereas CS performed their usual swimming training. Before and after the training program, both groups performed a) two time trials, 186 m using arms-only (186ARMS) and 372 m using full-stroke (372FULL) freestyle swimming, and b) an incremental arm-pulling exercise test. The time to complete the trials was recorded. Peak oxygen uptake (VO2peak), peak exercise intensity (EIpeak) submaximal oxygen uptake at 60 W (VO2−60) and exercise intensity at ventilatory threshold (VTW) were determined from the exercise test.

Results:

After training, ES had improved in 186ARMS (−14.2 ± 3.6%, P = .03), VO2−60 (−22.5 ± 2.3%, P = .04), EIpeak (+17.8 ± 4.2%, P = .03), and VTW (+18.9 ± 2.3%, P = .02), but not in VO2peak (P = .09) or in 372FULL (P = .07). None of the measures changed in CS (P > .05).

Conclusion:

Arms-only swimming training at 20% of the weekly training distance is an effective method to improve arm conditioning during the preparatory phase of the annual training cycle.

Restricted access

Michael J. Hartman, Brandon Clark, Debra A. Bemben, J. Lon Kilgore and Michael G. Bemben

Context:

Many elite athletes use increased daily training frequencies as a means to increase training load without substantial published literature to support this practice.

Purpose:

To compare the physiological responses to twice- and once-daily training sessions with similar training volumes.

Methods:

Ten nationally competitive male weightlifters (age 20.5 ± 1.2 y, body mass 92.9 ± 23.6 kg, training history 5.5 ± 1.5 y) were matched on body mass and training experience, then randomly assigned to train either once or twice daily for 3 wk. Isometric knee-extension strength (ISO), muscle cross-sectional area, vertical-jump peak power, resting hormone concentrations, neuromuscular activation (EMG), and weightlifting performance were obtained before and after the experimental training period.

Results:

All dependent measures before the training intervention were similar for both groups. A 2-way repeated-measures ANOVA did not reveal any significant main effects (group or trial) or interaction effects (group × trial) for any of the dependent variables. There were also no significant group differences when parameters were expressed as percentage change, but the twice-daily training group had a greater percentage change in ISO (+5.1% vs +3.2%), EMG (+20.3% vs +9.1%), testosterone (+10.5% vs +6.4%), and testosterone:cortisol ratio (−10.5% vs +1.3%) than did the once-daily training group.

Conclusions:

There were no additional benefits from increased daily training frequency in national-level male weightlifters, but the increase in ISO and EMG activity for the twice-daily group might provide some rationale for dividing training load in an attempt to reduce the risk of overtraining.

Restricted access

Thomas Zochowski, Elizabeth Johnson and Gordon G. Sleivert

Context:

Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.

Purpose:

To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.

Methods:

Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.

Results:

Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).

Conclusions:

A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.

Restricted access

Sonya L. Cameron, Rebecca T. McLay-Cooke, Rachel C. Brown, Andrew R. Gray and Kirsty A. Fairbairn

Purpose:

This study investigated the effect of ingesting 0.3 g/kg body weight (BW) of sodium bicarbonate (NaHCO3) on physiological responses, gastrointestinal (GI) tolerability, and sprint performance in elite rugby union players.

Methods:

Twenty-five male rugby players, age 21.6 (2.6) yr, participated in a randomized, double-blind, placebo-controlled crossover trial. Sixty-five minutes after consuming 0.3 g/kg BW of either NaHCO3 or placebo, participants completed a 25-min warm-up followed by 9 min of high-intensity rugby-specific training followed by a rugby-specific repeated-sprint test (RSRST). Whole-blood samples were collected to determine lactate and bicarbonate concentrations and pH at baseline, after supplement ingestion, and immediately after the RSRST. Acute GI discomfort was assessed by questionnaire throughout the trials, and chronic GI discomfort was assessed during the 24 hr postingestion.

Results:

After supplement ingestion and immediately after the RSRST, blood HCO3 concentration and pH were higher for the NaHCO3 condition than for the placebo condition (p < .001). After the RSRST, blood lactate concentrations were significantly higher for the NaHCO3 than for the placebo condition (p < .001). There was no difference in performance on the RSRST between the 2 conditions. The incidence of belching, stomachache, diarrhea, stomach bloating, and nausea was higher after ingestion of NaHCO3 than with placebo (all p < .050). The severity of stomach cramps, belching, stomachache, bowel urgency, diarrhea, vomiting, stomach bloating, and flatulence was rated worse after ingestion of NaHCO3 than with placebo (p < .050).

Conclusions:

NaHCO3 supplementation increased blood HCO3 concentration and attenuated the decline in blood pH compared with placebo during high-intensity exercise in well-trained rugby players but did not significantly improve exercise performance. The higher incidence and greater severity of GI symptoms after ingestion of NaHCO3 may negatively affect physical performance, and the authors strongly recommend testing this supplement during training before use in competitive situations.

Restricted access

Kerry McGawley and Hans-Christer Holmberg

Purpose:

Cross-country-ski races place complex demands on athletes, with events lasting between approximately 3 min and 2 h. The aim of the current study was to compare the aerobic and anaerobic measures derived from a short time trial (TT) between male and female skiers using diagonal cross-country skiing.

Methods:

Twenty-four highly trained cross-country skiers (12 male and 12 female, age 17.4 ± 1.4 y, body mass 68.2 ± 8.9 kg, height 174 ± 8 cm) participated. The submaximal VO2–speed relationship and VO2max were derived from an incremental ramp test to exhaustion (RAMP), while the accumulated oxygen deficit (AOD), peak VO2, and performance time were measured during a 600-m TT.

Results:

The female skiers took longer to complete the TT than the males (209 ± 9 s vs 166 ± 7 s, P < .001) and exhibited a lower relative anaerobic contribution (20% ± 4% vs 24% ± 3%, P = .015) and a higher fractional utilization of VO2max (84% ± 4% vs 79% ± 5%, P = .007) than males. Although there was no significant difference in AOD between the sexes (40.9 ± 9.5 and 47.3 ± 7.4 mL/kg for females and males, respectively; P = .079), the mean difference ± 90% confidence intervals of 6.4 ± 6.0 mL/kg reflected a likely practical difference (ES = 0.72). The peak VO2 during the TT was significantly higher than VO2max during the RAMP for all participants combined (62.3 ± 6.8 vs 60.5 ± 7.2 mL · kg−1 · min−1, P = .011), and the mean difference ± 90% confidence intervals of 1.8 ± 1.1 mL · kg−1 · min−1 reflected a possible practical difference (ES = 0.25).

Conclusions:

These results show that performance and physiological responses to a self-paced TT lasting approximately 3 min differ between sexes. In addition, a TT may provide a valid measure of VO2max.

Restricted access

Laura Capranica and Mindy L. Millard-Stafford

A prevailing theory (and practical application) is that elite performance requires early childhood skill development and training across various domains, including sport. Debate continues whether children specializing early (ie, training/competition in a single sport) have true advantage compared with those who sample various sports early and specialize in a single sport later (adolescence). Retrospective data and case studies suggest either model yields elite status depending upon the sport category (ie, situational: ball games, martial arts, fencing; quantitative: track and feld, swimming, skiing; or qualitative: gymnastics, diving, figure skating). However, potential risks of early specialization include greater attrition and adverse physical/emotional health outcomes. With the advent of the IOC Youth Olympic Games, increased emphasis on global youth competition has unknown implications but also represents a potential platform for investigation. Modification of youth competition formats should be based upon multidisciplinary research on psycho-physiological responses, and technical-tactical behaviors during competition. The assumption that a simple scaled-down approach of adult competitions facilitates the development of technical/tactical skills of youth athletes is not necessarily substantiated with field-based research. Relatively little evidence exists regarding the long-term effects of rigorous training and competitive schedules on children in specific sports. It is clear that more prospective studies are needed to understand the training dose that optimally develops adaptations in youth without inducing dropout, overtraining syndrome, and/or injury. Such an approach should be sport specific as well as gender based. Until such evidence exists, coaches and sport administrators will continue to rely upon their sport-specific dogma to influence programmatic development of our most vulnerable population.

Restricted access

Mohamed Ali Nabli, Nidhal Ben Abdelkrim, Imed Jabri, Tahar Batikh, Carlo Castagna and Karim Chamari

Purpose:

To examine the relation between game performance, physiological responses, and field-test results in Tunisian basketball referees.

Methods:

Computerized time–motion analysis, heart rate (HR), and blood lactate concentration [La] were measured in 15 referees during 8 competitive games (under-19-y-old Tunisian league). Referees also performed a repeated-sprint test (RSA), Yo-Yo Intermittent Recovery Test level 1 (YYIRTL1), agility T-test, and 30-m sprint with 10-m lap time. Computerized video analysis determined the time spent in 5 locomotor activities (standing, walking, jogging, running, and sprint), then grouped in high-, moderate-, and low-intensity activities (HIAs, MIAs, and LIAs, respectively).

Results:

YYIRTL1 performance correlated with (1) total distance covered during the 4th quarter (r = .52, P = .04) and (2) distance covered in LIA during all game periods (P < .05). Both distance covered and time spent in MIA during the 1st quarter were negatively correlated with the YYIRTL1 performance (r = –.53, P = .035; r = –.67, P = .004, respectively). A negative correlation was found between distance covered at HIA during the 2nd half (3rd quarter + 4th quarter) and fatigue index of the RSA test (r = –.54, P = .029). Mean HR (expressed as %HRpeak) during all game periods was correlated with YYIRTL1 performance (.61 ≤ r < .67, P < .01).

Conclusions:

This study showed that (1) the YYIRTL1 performance is a moderate predictor of game physical performance in U-19 basketball referees and (2) referees’ RSA correlates with the amount of HIA performed during the 2nd half, which represents the ability to keep up with play.