Search Results

You are looking at 131 - 140 of 313 items for :

Clear All
Restricted access

Barbara B. Brown, Ken R. Smith, Doug Tharp, Carol M. Werner, Calvin P. Tribby, Harvey J. Miller and Wyatt Jensen

Background:

Complete streets require evaluation to determine if they encourage active transportation.

Methods:

Data were collected before and after a street intervention provided new light rail, bike lanes, and better sidewalks in Salt Lake City, Utah. Residents living near (<800 m) and far (≥801 to 2000 m) from the street were compared, with sensitivity tests for alternative definitions of near (<600 and <1000 m). Dependent variables were accelerometer/global positioning system (GPS) measures of transit trips, nontransit walking trips, and biking trips that included the complete street corridor.

Results:

Active travel trips for Near-Time 2 residents, the group hypothesized to be the most active, were compared with the other 3 groups (Near-Time 1, Far-Time 1, and Far-Time 2), net of control variables. Near-Time 2 residents were more likely to engage in complete street transit walking trips (35%, adjusted) and nontransit walking trips (50%) than the other 3 groups (24% to 25% and 13% to 36%, respectively). Bicycling was less prevalent, with only 1 of 3 contrasts significant (10% of Near-Time 2 residents had complete street bicycle trips compared with 5% of Far-Time 1 residents).

Conclusions:

Living near the complete street intervention supported more pedestrian use and possibly bicycling, suggesting complete streets are also public health interventions.

Restricted access

Timothy B. Hartwig, Geraldine Naughton and John Searl

Purpose:

Investigating adolescent training loads might help us understand optimal training adaptations. GPS tracking devices and training diaries were used to quantify weekly sport and other physical activity demands placed on adolescent rugby union players and profile typical rugby training sessions.

Methods:

Participants were 75 males age 14 to 18 y who were recruited from rugby teams representing 3 levels of participation: schoolboy, national representative, and a selective sports school talent squad.

Results:

Schoolboy players covered a distance of (mean ± SD) 3511 ± 836 m, representative-squad players 3576 ± 956 m, and talent-squad players 2208 ± 637 m per rugby training session. The representative squad recorded the highest weekly duration of sport and physical activity (515 ± 222 min/wk), followed by the talent squad (421 ± 211 min/week) and schoolboy group (370 ± 135 min/wk). Profiles of individual players identified as group outliers showed participation in up to 3 games and up to 11 training sessions per week, with twice the weekly load of the team averages.

Conclusion:

Optimal participation and performance of adolescent rugby union players might be compromised by many high-load, high-impact training sessions and games and commitments to other sports and physical activities. An improved understanding of monitoring and quantifying load in adolescent athletes is needed to facilitate best-practice advice for player management and training prescription.

Restricted access

Jocelyn K. Mara, Kevin G. Thompson, Kate L. Pumpa and Nick B. Ball

Purpose:

To investigate the variation in training demands, physical performance, and player well-being across a women’s soccer season.

Methods:

Seventeen elite female players wore GPS tracking devices during every training session (N = 90) throughout 1 national-league season. Intermittent high-speed-running capacity and 5-, 15-, and 25-m-sprint testing were conducted at the beginning of preseason, end of preseason, midseason, and end of season. In addition, subjective well-being measures were selfreported daily by players over the course of the season.

Results:

Time over 5 m was lowest at the end of preseason (mean 1.148 s, SE 0.017 s) but then progressively deteriorated to the end of the season (P < .001). Sprint performance over 15 m improved by 2.8% (P = .013) after preseason training, while 25-m-sprint performance peaked at midseason, with a 3.1% (P = .05) improvement from the start of preseason, before declining at the end of season (P = .023). Training demands varied between phases, with total distance and high-speed distance greatest during preseason before decreasing (P < .001) during the early- and late-season phases. Endurance capacity and well-being measures did not change across training phases.

Conclusions:

Monitoring training demands and subsequent physical performance in elite female soccer players allow coaches to ensure that training periodization goals are being met and related positive training adaptations are being elicited.

Restricted access

Jace A. Delaney, Heidi R. Thornton, John F. Pryor, Andrew M. Stewart, Ben J. Dascombe and Grant M. Duthie

Purpose:

To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies.

Methods:

Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s2), and average metabolic power (Pmet) for a range of durations (1–10 min). Differences between positions and durations were described using a magnitude-based network.

Results:

Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27–1.00). Pmet demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86–0.99). Halfbacks demonstrated the greatest relative distance and Pmet outputs but were similar to outside backs and loose forwards in AveAcc demands.

Conclusions:

The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

Restricted access

Brendan R. Scott, Robert G. Lockie, Timothy J. Knight, Andrew C. Clark and Xanne A.K. Janse de Jonge

Purpose:

To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer.

Methods:

Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; <14.4 km/h], high-speed running [HSR; >14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product–moment correlations.

Results:

Physical measures of TD, LSA volume, and player load provided large, significant (r = .71−.84; P < .01) correlations with the HR-based and sRPE-based methods. Volume of HSR and VHSR provided moderate to large, significant (r = .40−.67; P < .01) correlations with measures of internal TL.

Conclusions:

While the volume of HSR and VHSR provided significant relationships with internal TL, physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.

Restricted access

William P. McCormack, Jay R. Hoffman, Gabriel J. Pruna, Tyler C. Scanlon, Jonathan D. Bohner, Jeremy R. Townsend, Adam R. Jajtner, Jeffrey R. Stout, Maren S. Fragala and David H. Fukuda

Purpose:

During the competitive soccer season, women’s intercollegiate matches are typically played on Friday evenings and Sunday afternoons. The efficacy of a 42-h recovery period is not well understood. This investigation was conducted to determine performance differences between Friday and Sunday matches during a competitive season.

Methods:

Ten NCAA Division I female soccer players (20.5 ± 1.0 y, 166.6 ± 5.1 cm, 61.1 ± 5.8 kg) were monitored with 10-Hz GPS devices across 8 weekends with matches played on Friday evenings and Sunday afternoons. The players were outside backs, midfielders, and forwards. All players had to participate in a minimum of 45 min/match to be included in the study. Average minutes played, total distance covered, total distance of high-intensity running (HIR) (defined as running at a velocity equal to or exceeding 3.61 m/s for longer than 1 s), the number of HIR efforts, and the number of sprints were calculated for each match. Data for Friday vs Sunday matches were averaged and then compared using dependent t tests.

Results:

No differences were seen in minutes played, distance rate, or number of sprints between Friday and Sunday matches. A significant (P = .017) decrease in rate of HIR between Friday (25.37 ± 7.22 m/min) and Sunday matches (22.90 ± 5.70 m/min) was seen. In addition, there was a trend toward a difference (P = .073) in the number of efforts of HIR between Friday (138.41 ± 36.43) and Sunday (126.92 ± 31.31).

Conclusions:

NCAA Division I female soccer players cover less distance of HIR in games played less than 48 h after another game. This could be due to various factors such as dehydration, glycogen depletion, or muscle damage.

Restricted access

Martin Buchheit, Yannick Cholley and Philippe Lambert

Purpose:

To examine in elite soccer players after traveling across 6 time zones some psychometric and physiological responses to a competitive camp in the heat.

Methods:

Data from 12 elite professional players (24.6 ± 5.3 y) were analyzed. They participated in an 8-d preseason summer training camp in Asia (heat index 34.9°C ± 2.4°C). Players’ activity was collected during all training sessions and the friendly game using 15-Hz GPS. Perceived training/playing load was estimated using session rating of perceived exertion (RPE) and training/match duration. Psychometric measures of wellness were collected on awakening before, during, and after the camp using simple questionnaires. Heart-rate (HR) response to a submaximal 4-min run (12 km/h) and the ratio between velocity and force-load (accelerometer-derived measure, a marker of neuromuscular efficiency) response to four ~60-m runs (22–24 km/h) were collected before, at the end of, and after the camp.

Results:

After a large increase, the RPE:m/min ratio decreased substantially throughout the camp. There were possible small increases in perceived fatigue and small decreases in subjective sleep quality on the 6th day. There were also likely moderate (~3%) decreases in HR response to the submaximal run, both at the end of and after the camp, which were contemporary to possible small (~8%) and most likely moderate (~19%) improvements in neuromuscular efficiency, respectively.

Conclusions:

Despite transient increases in fatigue and reduced subjective sleep quality by the end of the camp, these elite players showed clear signs of heat acclimatization that were associated with improved cardiovascular fitness and neuromuscular running efficiency.

Restricted access

Mitchell Mooney, Stuart Cormack, Brendan O’Brien and Aaron J Coutts

Purpose:

The purpose of this study was to determine if Yo-Yo Intermittent Recovery level 2 (Yo-Yo IR2) and the number of interchange rotations affected the match activity profile of elite Australian footballers.

Method:

Fifteen elite Australian footballers completed the Yo-Yo IR2 before the beginning of the season and played across 22 matches in which match activity profiles were measured via microtechnology devices containing a global positioning system (GPS) and accelerometer. An interchange rotation was counted when a player left the field and was replaced with another player. Yo-Yo IR2 results were further split into high and low groups.

Results:

Players match speed decreased from 1st to 4th quarter, while average-speed (m/min: P = .05) and low-speed activity (LSA, <15 km/h) per minute (LSA m/min; P = .06) significantly decreased in the 2nd half. Yo-Yo IR2 influenced the amount of m/min, high-speed running (HSR, >15 km/h) per minute (HSR m/min) and accelerometer load/min throughout the entire match. The number of interchanges significantly influenced the HSR m/min and m/min throughout the match except in the 2nd quarter. Furthermore, the low Yo-Yo IR2 group had significantly less LSA m/min in the 4th quarter than the high Yo-Yo IR2 group (92.2 vs 96.7 m/min, P = .06).

Conclusions:

Both the Yo-Yo IR2 and number of interchanges contribute to m/min and HSR m/min produced by elite Australian footballers, affecting their match activity. However, while it appears that improved Yo-Yo IR2 performance prevents reductions in LSA m/min during a match, higher-speed activities (HSR m/min) and overall physical activity (m/min and load/min) are still reduced in the 4th quarter compared with the 1st quarter.

Restricted access

Juan Del Coso, Javier Portillo, Juan José Salinero, Beatriz Lara, Javier Abian-Vicen and Francisco Areces

The aim of this investigation was to determine the efficacy of a caffeine-containing energy drink to improve physical performance of elite field hockey players during a game. On 2 days separated by a week, 13 elite field hockey players (age and body mass = 23.2 ± 3.9 years and 76.1 ± 6.1 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo drink). After 60 min for caffeine absorption, participants played a simulated field hockey game (2 × 25 min). Individual running pace and instantaneous speed during the game were assessed using GPS devices. The total number of accelerations and decelerations was determined by accelerometry. Compared with the placebo drink, the caffeinated energy drink did not modify the total distance covered during the game (6,035 ± 451 m and 6,055 ± 499 m, respectively; p = .87), average heart rate (155 ± 13 beats per min and 158 ± 18 beats per min, respectively; p = .46), or the number of accelerations and decelerations (697 ± 285 and 618 ± 221, respectively; p = .15). However, the caffeinated energy drink reduced the distance covered at moderate-intensity running (793 ± 135 and 712 ± 116, respectively; p = .03) and increased the distance covered at high-intensity running (303 ± 67 m and 358 ± 117 m; p = .05) and sprinting (85 ± 41 m and 117 ± 55 m, respectively; p = .02). Elite field hockey players can benefit from ingesting caffeinated energy drinks because they increase the running distance covered at high-intensity running and sprinting. Increased running distance at high speed might represent a meaningful advantage for field hockey performance.

Restricted access

Jamie Stanley, Shaun D’Auria and Martin Buchheit

The authors examined whether changes in heart-rate (HR) variability (HRV) could consistently track adaptation to training and race performance during a 32-wk competitive season. An elite male long-course triathlete recorded resting HR (RHR) each morning, and vagal-related indices of HRV (natural logarithm of the square root of mean squared differences of successive R−R intervals [ln rMSSD] and the ratio of ln rMSSD to R−R interval length [ln rMSSD:RR]) were assessed. Daily training load was quantified using a power meter and wrist-top GPS device. Trends in HRV indices and training load were examined by calculating standardized differences (ES). The following trends in week-to-week changes were consistently observed: (1) When the triathlete was coping with a training block, RHR decreased (ES −0.38 [90% confidence limits −0.05;−0.72]) and ln rMSSD increased (+0.36 [0.71;0.00]). (2) When the triathlete was not coping, RHR increased (+0.65 [1.29;0.00]) and ln rMSSD decreased (−0.60 [0.00;−1.20]). (3) Optimal competition performance was associated with moderate decreases in ln rMSSD (−0.86 [−0.76;−0.95]) and ln rMSSD:RR (−0.90 [−0.60;−1.20]) in the week before competition. (4) Suboptimal competition performance was associated with small decreases in ln rMSSD (−0.25 [−0.76;−0.95]) and trivial changes in ln rMSSD:RR (−0.04 [0.50;−0.57]) in the week before competition. To conclude, in this triathlete, a decrease in RHR concurrent with increased ln rMSSD compared with the previous week consistently appears indicative of positive training adaptation during a training block. A simultaneous reduction in ln rMSSD and ln rMSSD:RR during the final week preceding competition appears consistently indicative of optimal performance.