Search Results

You are looking at 131 - 140 of 1,166 items for :

Clear All
Restricted access

Andrew M. Jones and Mark Burnley

The rate at which VO2 adjusts to the new energy demand following the onset of exercise strongly influences the magnitude of the “O2 defcit” incurred and thus the extent to which muscle and systemic homeostasis is perturbed. Moreover, during continuous high-intensity exercise, there is a progressive loss of muscle contractile efficiency, which is reflected in a “slow component” increase in VO2. The factors that dictate the characteristics of these fast and slow phases of the dynamic response of VO2 following a step change in energy turnover remain obscure. However, it is clear that these features of the VO2 kinetics have the potential to influence the rate of muscle fatigue development and, therefore, to affect sports performance. This commentary outlines the present state of knowledge on the characteristics of, and mechanistic bases to, the VO2 response to exercise of different intensities. Several interventions have been reported to speed the early VO2 kinetics and/or reduce the magnitude of the subsequent VO2 slow component, and the possibility that these might enhance exercise performance is discussed.

Restricted access

Neil Armstrong and Melitta McNarry

Peak oxygen uptake (V̇O2) is widely recognized as the criterion measure of young people’s aerobic fitness. Peak V̇O2 in youth has been assessed and documented for over 75 years but the interpretation of peak V̇O2 and its trainability are still shrouded in controversy. Causal mechanisms and their modulation by chronological age, biological maturation and sex remain to be resolved. Furthermore, exercise of the intensity and duration required to determine peak V̇O2 is rarely experienced by most children and adolescents. In sport and in everyday life young people are characterized by intermittent bouts of exercise and rapid changes in exercise intensity. In this context it is the transient kinetics of pulmonary V̇O2 (pV̇O2), not peak V̇O2, which best describe aerobic fitness. There are few rigorously determined and appropriately analyzed data from young people’s pV̇O2 kinetics responses to step changes in exercise intensity. Understanding of the trainability of pV̇O2 kinetics is principally founded on comparative studies of trained and untrained youth and much remains to be elucidated. This paper reviews peak V̇O2, pV̇O2 kinetics, and their trainability in youth. It summarizes “what we know,” identifies significant gaps in our knowledge, raises relevant questions, and indicates avenues for future research.

Restricted access

Benoit Capostagno and Andrew Bosch

This study examined the differences in fat and carbohydrate oxidation during running and cycling at the same relative exercise intensities, with intensity determined in a number of ways. Specifically, exercise intensity was expressed as a percentage of maximum workload (WLmax), maximum oxygen uptake (%VO2max), and maximum heart rate (%HRmax) and as rating of perceived exertion (RPE). Ten male triathletes performed maximal running and cycling trials and subsequently exercised at 60%, 65%, 70%, 75%, and 80% of their WLmax. VO2, HR, RPE, and plasma lactate concentrations were measured during all submaximal trials. Fat and carbohydrate oxidation were calculated from VO2 and VCO2 data. A 2-way ANOVA for repeated measures was used to determine any statistically significant differences between exercise modes. Fat oxidation was shown to be significantly higher in running than in cycling at the same relative intensities expressed as either %WLmax or %VO2max. Neither were there any significant differences in VO2max and HRmax between the 2 exercise modes, nor in submaximal VO2 or RPE between the exercise modes at the same %WLmax. However, heart rate and plasma lactate concentrations were significantly higher when cycling at 60% and 65% and 65–80%WLmax, respectively. In conclusion, fat oxidation is significantly higher during running than during cycling at the same relative intensity expressed as either %WLmax or %VO2max.

Restricted access

Peter A. Hosick, Robert G. McMurray, A.C. Hackney, Claudio L. Battaglini, Terry P. Combs and Joanne S. Harrell

Reports suggest children with high aerobic fitness (VO2max; mL/kg/min) have healthier profiles of TNF-α and IL-6; however, research has not accounted for differences in adiposity between high-fit and low-fit individuals. Thus, this study examined differences in inflammatory markers of obese and normal weight children of different fitness levels, using two different VO2max units: per unit of fat free mass (VO2FFM) or total body mass (VO2kg). Children (n = 124; ages 8–12) were divided into four matched groups; normal weight high-fit (NH), normal weight low-fit (NL), obese high-fit (OH), and obese low-fit (OL). Height, weight, skinfolds, body mass index (BMI), and predicted VO2max were measured and a morning, fasting blood sample taken. IL-6 was elevated in the NL and OL groups compared with the NH group, as well as the OL group compared with the OH group. No differences were found in TNF-α. The relationship between IL-6 or TNF-α and the two units of predicted VO2max did not differ suggesting that either VO2FFM or VO2kg can be used to describe aerobic power when studying inflammation and exercise in youth. The relationship between IL-6 or TNF-α and predicted VO2max, whether expressed per mass or per fat-free mass was similar, suggesting that both can be used to describe aerobic power when studying inflammation and exercise in youth. Given the polar design of this study, this relationship should be confirmed including overweight subjects.

Restricted access

Robert G. McMurray, Joanne S. Harrell, Shrikant I. Bangdiwala, Shibing Deng and Chris Baggett

This study evaluated factors that contribute to the increased energy cost of locomotion in youth. The subjects were 321 8-18-year-old youth, similar dispersed by age and sex. Oxygen uptake (VO2) was measured during rest (REE), running at 8 km · h−1 and cycling at 16 km · h−1, using a COSMED K4b2 metabolic system. Developmental stage was obtained via questionnaire. Stature, body mass, and skinfolds (triceps & subscapular) were measured. Both sexes had similar absolute VO2 (mL · min−1) at rest (p = 0.065) and running (p = 0.084), but the males had a higher VO2 during cycling (p = 0.046). There were no sex differences in relative VO2 (mL · kg−1 · min−1) at rest (p = 0.083); however, the males had a higher VO2 than the females during cycling and running (p £ 0.002). Multiple regression, tested for collinearity, found that absolute VO2 during cycling and running was mostly related to fat-free mass (p = 0.0001). Similar analyses for relative VO2 (mL · kg−1 · min−1) during cycling found that fat-free mass, sex, and skinfolds were significant contributors (p ‡ 0.003). During running the relative VO2 was related to skinfolds, fat-free mass, and resting energy expenditure (p < 0.05). Neither age nor developmental stage was a significant contributor. The results indicate that the VO2 of locomotion is most closely associated with fat-free mass. Thus, to compare youth of varying age or pubertal developmental status, fat-free mass should be taken into consideration.

Restricted access

Hervé Assadi and Romuald Lepers

Purposes:

To compare the physiological responses and maximal aerobic running velocity (MAV) during an incremental intermittent (45-s run/15-s rest) field test (45-15FIT) vs an incremental continuous treadmill test (TR) and to demonstrate that the MAV obtained during 45-15FIT (MAV45-15) was relevant to elicit a high percentage of maximal oxygen uptake (VO2max) during a 30-s/30-s intermittent training session.

Methods:

Oxygen uptake (VO2), heart rate (HR), and lactate concentration ([La]) were measured in 20 subjects during 2 maximal incremental tests and four 15-min intermittent tests. The time spent above 90% and 95% VO2max (t90% and t95% VO2max, respectively) was determined.

Results:

Maximal physiological parameters were similar during the 45-15FIT and TR tests (VO2max 58.6 ± 5.9 mL · kg−1 · min−1 for TR vs 58.5 ± 7.0 mL · kg−1 · min−1 for 45-15FIT; HRmax 200 ± 8 beats/min for TR vs 201 ± 7 beats/min for 45-15FIT). MAV45-15 was significantly (P < .001) greater than MAVTR (17.7 ± 1.1 vs 15.6 ± 1.4 km/h). t90% and t95% VO2max during the 30-s/30-s performed at MAVTR were significantly (P < .01) lower than during the 30-s/30-s performed at MAV45-15. Similar VO2 during intermittent tests performed at MAV45-15 and at MAVTR can be obtained by reducing the recovery time or using active recovery.

Conclusions:

The results suggested that the 45-15FIT is an accurate field test to determine VO2max and that MAV45-15 can be used during high-intensity intermittent training such as 30-s runs interspersed with 30-s rests (30-s/30-s) to elicit a high percentage of VO2max.

Restricted access

Denise M. Roche, Sarah Edmunds, Tim Cable, Mo Didi and Gareth Stratton

No studies to date have evaluated the relationship between exercise and microvascular function in youth with type 1 diabetes mellitus (T1DM). Twenty-nine complication free children and adolescents with T1DM were assessed for skin microvascular reactivity, aerobic fitness (VO2peak) and physical activity. VO2peak but not physical activity was significantly and independently associated with maximal hyperemia of the skin microcirculation (p < .01). No significant associations were found between venoarte-riolar reflex (VAR) vasoconstriction and VO2peak or physical activity. Aerobic fitness may be an important indicator or mediator of effective microvascular endothelial function in youth with T1DM.

Restricted access

Kathleen M. Shuleva, Gary R. Hunter, Donna J. Hester and Donna L. Dunaway

This study compared submaximal and maximal oxygen uptake (V̇O2 max) in children ages 3–4 and 5–6 years. Methods appropriate for this age group were developed to elicit maximal performance on the exercise tests. Subjects (N = 22) performed progressive treadmill walking tests. The criteria used to determine whether V̇O2 max was reached were a plateauing of oxygen uptake, HR > 195, and an R > 1.00. The V̇O2 max for the 3- and 4-year-olds (44.5 ml•kg−1•min−1) was not significantly different from that of the 5- and 6-year-olds (44.1 ml•kg−1•min−1). At submaximal levels, 5- and 6-year-olds had significantly lower relative oxygen uptake, indicating better economy in walking. A large proportion of children met testing criteria for V̇O2 max. Test-retest results indicated that the tests were reliable.

Restricted access

Thomas Rowland, Gregory Kline, Donna Goff, Leslie Martel and Lisa Ferrone

Little is known regarding the physiological determinants of maximal oxygen uptake (VO2max) in children. A group of 39 healthy sixth-grade boys (mean age, 12.2 years) underwent maximal cycle testing with determination of cardiovascular factors using Doppler echocardiography as well as standard gas exchange variables. Maximal stroke index was related to VO2max/kg (r=0.52, p < .05), but no relationship was observed between VO2max/kg and either maximal heart rate or calculated maximal arteriovenous oxygen difference. Values of maximal stroke index were closely related to those at rest (r = 0.67). These findings suggest that factors influencing resting stroke volume are primarily responsible for inter-individual differences in VO2max per kg in healthy, non-athletically-trained boys.

Restricted access

Kenneth H. Pitetti and Bo Fernhall

The purpose of this study was to evaluate the relationship between aerobic capacity (VO2peak) and leg strength of male (n = 17) and female (n = 12) youths (age = 14.2 ± 2.1 years) with mild to moderate mental retardation. Aerobic capacity was determined by a treadmill test (GXT) and isokinetic knee flexion and extension strength (peak torque, peak force, average force) was determined by isokinetic dynamometry. Results indicate that significant positive relationships (p < .05) exist between VO2peak (ml · min−1 · kg−1) and isokinetic leg strength expressed relative to body weight. The results indicate that leg strength is a contributor to aerobic fitness in youths with mental retardation. Additionally, when considering the low levels of both strength and VO2peak, leg strength may be a limiting factor of VO2peak in these youths, or the relationship may be explained by the concept of metabolic nonspecialization.