Search Results

You are looking at 131 - 140 of 3,488 items for :

Clear All
Restricted access

Jurjen Bosga and Ruud G. J. Meulenbroek

In this study we investigated redundancy control in joint action. Ten participantpairs (dyads) performed a virtual lifting task in which isometric forces needed to be generated with two or four hands. The participants were not allowed to communicate but received continuous visual feedback of their performance. When the task had to be performed with four hands, participants were confronted with a redundant situation and between-hand force synergies could, in principle, be formed. Performance timing, success rates, cross-correlations, and relative phase analyses of the force-time functions were scrutinized to analyze such task-dependent synergies. The results show that even though the dyads performed the task slower and less synchronized in the joint than in the solo conditions, the success rates in these conditions were identical. Moreover, correlation and relative phase analyses demonstrated that, as expected, the dyads formed between-participant synergies that were indicative of force sharing in redundant task conditions.

Restricted access

Amy M. Knab, David C. Nieman, Nicholas D. Gillitt, R. Andrew Shanely, Lynn Cialdella-Kam, Dru A. Henson and Wei Sha

The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post–10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days.

Restricted access

Vera L. Talis and Irina A Solopova

We investigated the development of postural reactions induced in standing subjects by Achilles tendon vibration. We compared vibratory reactions in 3 different conditions: normal standing, standing near support, and when the solid support being protracted forward changed the initial posture. Additional support for the back was placed at subject's sacral or shoulder level. In the easy standing condition, the postural vibration reaction consists of progressive backward upper body movement. When the body contacted the additional support on the sacral level during the vibratory reaction, the movement of the upper body continued in most of the subjects. This was accompanied by an increase of pressure on the toes. When the support was applied at the shoulder level, the body motion reversed its direction in half of the subjects. In this case, backward-forward oscillations occurred near the support. The initial change of body-support interaction did not influence the ensuing vibration reaction; namely the reaction was similar to that with the support near to the body at the sacral level. Our data demonstrate that the vibration-induced reaction is not a local reaction limited to one joint, but a complex postural synergy that involves both leg and trunk muscles and integrates the information from touch and pressure afferents of the upper body.

Restricted access

Mark L. Latash, Jae Kun Shim, Fan Gao and Vladimir M. Zatsiorsky

We review a series of studies that show stabilization of the moment of a couple produced by a set of digits in many maximal and submaximal accurate force production tasks that have no requirements for the moment. In particular, an unusual and novel multi-digit force production task shows stabilization of the total moment while the total force requires extensive practice to be stabilized. Similar results were obtained in persons with Down syndrome during easier tasks. During prehension, changes in digit forces and coordinates of their points of application suggest the presence of two multi-digit synergies whose purpose is to assure a certain grip force and a certain total moment, respectively. Elderly persons show impaired production of both maximal and submaximal moments that goes beyond their documented loss of muscle force. We conclude that moment production (keeping rotational equilibrium) is a central constraint in a variety of multi-digit tasks that has received little attention. Analysis of digit interaction for moment production during handwriting could signify a major step towards understanding the control of this action.

Restricted access

Susumu Yahagi, Zhen Ni, Makoto Takahashi, Yusaku Takeda, Toshio Tsuji and Tatsuya Kasai

Using transcranial magnetic stimulation (TMS), differences in the excitability changes of motor evoked potentials (MEPs) between isometric (force task) and isotonic (movement task) muscle contractions in a distal (first dorsal interosseous; FDI) and a proximal (middle deltoid; MD) muscle were studied. In the FDI muscle, the active threshold of MEP recruitment was significantly lower in the isotonic than that in the isometric muscle contraction in spite of identical background EMG activity levels. Additionally, the dependence of the MEP amplitude on background EMG activity was significantly greater in the isotonic than in the isometric muscle contraction at low EMG activity levels, but the difference disappeared beyond middle EMG activity levels. In the MD muscle, the dependence of the MEP amplitude on background EMG activity was significantly greater in the isotonic than in the isometric muscle contraction, and further this dependence was kept at all muscle contraction levels. These results indicate that the dependence of the MEP amplitude on background EMG activity is modulated not only by the different muscle contraction modes (isotonic and isometric), but also by muscle properties (distal and proximal). Thus, the present findings suggest that the task-specific extra excitation in the proximal muscle is definitely produced corresponding to task differences (task-dependent subliminal fringe), which might be explained by the predominant frequency principle if applied to the proximal muscle. On the other hand, the lack of task-dependent extra excitation in the distal muscle is explained by the predominant recruitment principle for force grading in small hand muscles.

Restricted access

Saira Chaudhry, Dylan Morrissey, Roger C. Woledge, Dan L. Bader and Hazel R.C. Screen

Triceps surae eccentric exercise is more effective than concentric exercise for treating Achilles tendinopathy, however the mechanisms underpinning these effects are unclear. This study compared the biomechanical characteristics of eccentric and concentric exercises to identify differences in the tendon load response. Eleven healthy volunteers performed eccentric and concentric exercises on a force plate, with ultrasonography, motion tracking, and EMG applied to measure Achilles tendon force, lower limb movement, and leg muscle activation. Tendon length was ultrasonographically tracked and quantified using a novel algorithm. The Fourier transform of the ground reaction force was also calculated to investigate for tremor, or perturbations. Tendon stiffness and extension did not vary between exercise types (P = .43). However, tendon perturbations were significantly higher during eccentric than concentric exercises (25%–40% higher, P = .02). Furthermore, perturbations during eccentric exercises were found to be negatively correlated with the tendon stiffness (R 2 = .59). The particular efficacy of eccentric exercise does not appear to result from variation in tendon stiffness or extension within a given session. However, varied perturbation magnitude may have a role in mediating the observed clinical effects. This property is subject-specific, with the source and clinical timecourse of such perturbations requiring further research.

Restricted access

Anne R. Schutte and John P. Spencer

The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.

Restricted access

Yu-Ting Tseng, Sanaz Khosravani, Arash Mahnan and Jürgen Konczak

This review addresses the role of exercise as an intervention for treating neurological disease. It focuses on three major neurological diseases that either present in acute or neurodegenerative forms—Parkinson’s disease, cerebellar ataxia, and cortical stroke. Each of the diseases affects primarily different brain structures, namely the basal ganglia, the cerebellum, and the cerebrum. These structures are all known to be involved in motor control, and the dysfunction of each structure leads to distinct movement deficits. The review summarizes current knowledge on how exercise can aid rehabilitation or therapeutic efforts. In addition, it addresses the role of robotic devices in enhancing available therapies by reviewing how robot-aided therapies may promote the recovery for stroke survivors. It highlights recent scientific evidence in support of exercise as a treatment for brain dysfunction, but also outlines the still open challenges for unequivocally demonstrating the benefits of exercise.

Restricted access

John H. Challis

Repeat measurements were made by 2 operators on a group of 50 physically active subjects (age, 20.7 years ± 1.8; males: height 1.780 m ± 0.043. mass, 78.09 kg ± 9.30; females: height. 1.680 m ± 0.064. mass. 66.67 kg ± 6.67) to determine the precision with which the subjects' limb segment inertial parameters could be estimated. Segmental inertial parameters were determined using 3 techniques. 2 of which involved modeling segments as geometric solids, and a 3rd which used the equations of Zatsiorsky et al. (1990). Precisions were high for all 3 techniques, with little difference between inter- and intra-operator precisions. The lowest precisions were obtained for the hands and feet. For these segments the use of repeat measures to improve precision is recommended. These results imply that with similarly trained measurers, comparison of inertial parameters determined using the same protocol but obtained by different operators is appropriate, and that it is viable to have 2 measurers taking measurements on the same subject to accelerate data collection.

Restricted access

John L. Woodard and Annalise A.M. Rahman

Recent progress in technology has allowed for the development and validation of computer-based adaptations of existing pencil-and-paper neuropsychological measures and comprehensive cognitive test batteries. These computer-based assessments are frequently implemented in the field of clinical sports psychology to evaluate athletes’ functioning postconcussion. These tests provide practical and psychometric advantages over their pencil-and-paper counterparts in this setting; however, these tests also provide clinicians with unique challenges absent in paper-and-pencil testing. The purpose of this article is to present advantages and disadvantages of computer-based testing, generally, as well as considerations for the use of computer-based assessments for the evaluation of concussion among athletes. Furthermore, the paper provides suggestions for further development of computerized assessment of sports concussion given the limitations of the current technology.