Search Results

You are looking at 141 - 150 of 1,131 items for :

Clear All
Restricted access

Kennon Francis, Scott Hopkins and Ronald Feinstein

This study was conducted to determine if VO2, of stepping in children is affected by altering the step platform height based on leg length. The effect of leg length on VO2 and heart rate (HR) during stepping was examined in 19 children, ages 8–17, who stepped onto 5 different bench heights that corresponded to hip angles of 65°, 73°, 82°, 90°, or 98°. VO2 and HR response to a work load of 8 m · min−1 assumed a U-shaped curve with 82° assuming the lowest point of the curve. Efficiency of stepping was significantly higher at 82° when compared to the other hip angles. It was concluded that VO2 and HR in children is influenced by leg length during stepping, and there is an optimum step height for stepping that can be determined from the ratio of leg length to stature.

Restricted access

Colleen M. Grossner, Emily M. Johnson and Marco E. Cabrera

Differences in oxygen uptake (VO2) relative to body mass between children and adults walking or running at a given speed might be the result of body size differences. In order to determine whether body size is the main factor affecting these differences in VO2 per kg, we investigated treadmill economy in 10 female adolescents (girls) and 10 women who were matched for body size. There were no significant differences between groups in anthropometrics, stride frequency, or VO2peak. Mean mass-specific VO2 was not significantly different during walking (girls: 12.3 ± 1.7 ml·kg-1·min-1; women: 10.9 ± 1.4 ml·kg-1·min-1) or running (girls: 30.5 ± 3.5 ml·kg-1·min-1; women: 29.0 ± 2.0 ml·kg-1·min-1). Body size appears to have the largest effect on oxygen cost differences usually seen between girls and women during locomotion.

Restricted access

Thiago Oliveira Borges, Ben Dascombe, Nicola Bullock and Aaron J. Coutts

This study aimed to profile the physiological characteristics of junior sprint kayak athletes (n = 21, VO2max 4.1 ± 0.7 L/min, training experience 2.7 ± 1.2 y) and to establish the relationship between physiological variables (VO2max, VO2 kinetics, muscle-oxygen kinetics, paddling efficiency) and sprint kayak performance. VO2max, power at VO2max, power:weight ratio, paddling efficiency, VO2 at lactate threshold, and whole-body and muscle oxygen kinetics were determined on a kayak ergometer in the laboratory. Separately, on-water time trials (TT) were completed over 200 m and 1000 m. Large to nearly perfect (−.5 to −.9) inverse relationships were found between the physiological variables and on-water TT performance across both distances. Paddling efficiency and lactate threshold shared moderate to very large correlations (−.4 to −.7) with 200- and 1000-m performance. In addition, trivial to large correlations (−.11 to −.5) were observed between muscle-oxygenation parameters, muscle and whole-body oxygen kinetics, and performance. Multiple regression showed that 88% of the unadjusted variance for the 200-m TT performance was explained by VO2max, peripheral muscle deoxygenation, and maximal aerobic power (P < .001), whereas 85% of the unadjusted variance in 1000-m TT performance was explained by VO2max and deoxyhemoglobin (P < .001). The current findings show that well-trained junior sprint kayak athletes possess a high level of relative aerobic fitness and highlight the importance of the peripheral muscle metabolism for sprint kayak performance, particularly in 200-m races, where finalists and nonfinalists are separated by very small margins. Such data highlight the relative aerobic-fitness variables that can be used as benchmarks for talent-identification programs or monitoring longitudinal athlete development. However, such approaches need further investigation.

Restricted access

Christopher D. Black and Patrick J. O’Connor

Ginger has known hypoalgesic and anti-inflammatory properties. The effects of an oral dose of ginger on quadriceps muscle pain, rating of perceived exertion (RPE), and recovery of oxygen consumption were examined during and after moderateintensity cycling exercise. Twenty-five college-age participants ingested a 2-g dose of ginger or placebo in a double-blind, crossover design and 30 min later completed 30 min of cycling at 60% of VO2peak. Quadriceps muscle pain, RPE, work rate, heart rate (HR), and oxygen uptake (VO2) were recorded every 5 min during exercise, and HR and VO2 were recorded for 20 min after exercise. Compared with placebo, ginger had no clinically meaningful or statistically significant effect on perceptions of muscle pain, RPE, work rate, HR, or VO2 during exercise. Recovery of VO2 and HR after the 30-min exercise bout followed a similar time course in the ginger and placebo conditions. The results were consistent with related findings showing that ingesting a large dose of aspirin does not acutely alter quadriceps muscle pain during cycling, and this suggests that prostaglandins do not play a large role in this type of exercise-induced skeletal-muscle pain. Ginger consumption has also been shown to improve VO2 recovery in an equine exercise model, but these results show that this is not the case in humans.

Restricted access

Lieselot Decroix, Kevin De Pauw, Carl Foster and Romain Meeusen

Aim:

To review current cycling-related sport-science literature to formulate guidelines to classify female subject groups and to compare this classification system for female subject groups with the classification system for male subject groups.

Methods:

A database of 82 papers that described female subject groups containing information on preexperimental maximal cycle-protocol designs, terminology, biometrical and physiological parameters, and cycling experience was analyzed. Subject groups were divided into performance levels (PLs), according to the nomenclature. Body mass, body-mass index, maximal oxygen consumption (VO2max), peak power output (PPO), and training status were compared between PLs and between female and male PLs.

Results:

Five female PLs were defined, representing untrained, active, trained, well-trained, and professional female subjects. VO2max and PPO significantly increased with PL, except for PL3 and PL4 (P < .01). For each PL, significant differences were observed in absolute and relative VO2max and PPO between male and female subject groups. Relative VO2max is the most cited parameter for female subject groups and is proposed as the principal parameter to classify the groups.

Conclusion:

This systematic review shows the large variety in the description of female subject groups in the existing literature. The authors propose a standardized preexperimental testing protocol and guidelines to classify female subject groups into 5 PLs based on relative VO2max, relative PPO, training status, absolute VO2max, and absolute PPO.

Restricted access

Linda S. Pescatello, Loretta DiPietro, Ann E. Fargo, Adrian M. Ostfeld and Ethan R. Nadel

The cross-sectional relationship between physical activity, physical fitness, and measures of resting hemodynamic function and adiposity was examined in 11 women and 14 men, all of whom were in good health (M age = 69.3 yrs). Resting diastolic blood pressure (DBP) differed significantly by quartiles of both weekly energy expenditure and estimated VO2max. Subjects whose energy expenditure was above the 50th percentile had significantly lower DBP than less active subjects, independent of age, gender, and VO2max, whereas those above the 75th percentile of VO2max had lower DBP and mean arterial pressure compared to less fit subjects, independent of age, gender, and weekly energy expenditure. There were no significant differences in the body mass index or percent body fat by quartile of weekly energy expenditure or estimated VO2max in the multivariable analysis. Mean waist-to-hip ratio (WHR) differed by level of weekly energy expenditure, independent of age, gender, and VO2max; individuals who reported a threshold of energy expenditure ≥6,099 kcal/wk had less relative abdominal fat than those reporting less activity. There were no significant independent differences in mean WHR or the central-to-peripheral skinfold ratio between quartiles of VO2max.

Restricted access

Yagesh N. Bhambhani, Robert S. Burnham, Gary D. Wheeler, Peter Eriksson, Leona J. Holland and Robert D. Steadward

In this study we compared the ventilatory threshold (VT) between 8 untrained and 8 endurance-trained males with quadriplegia during simulated wheelchair exercise. Each subject completed an incremental velocity test in his personal wheelchair mounted on a customized roller system designed to provide velocity and distance feedback. VT was identified by two trained evaluators using established respiratory gas exchange criteria. A significant interevaluator reliability coefficient of .90 (p < .01) was observed for the detection of VT. Relative oxygen uptake (V̇O2, ml · kg-1 · min-1) at VT and peak V̇O2 were significantly (p < .05) higher in the endurance-trained compared to untrained subjects. However, no significant difference (p > .05) was observed between the two groups when VT was expressed as a percentage of peak V̇O2. Significant correlations of .86 and .81 (p < .01) were observed between VT and peak V̇O2 in the untrained and trained groups, respectively. It was concluded that endurance training improves both VT and peak V̇O2 during wheelchair exercise in male subjects with quadriplegia but does not improve VT when it is expressed relative to peak V̇O2.

Restricted access

Louisa Beale, Neil S Maxwell, Oliver R Gibson, Rosemary Twomey, Becky Taylor and Andrew Church

Background:

The purpose of this study was to characterize the physiological demands of a riding session comprising different types of recreational horse riding in females.

Methods:

Sixteen female recreational riders (aged 17 to 54 years) completed an incremental cycle ergometer exercise test to determine peak oxygen consumption (VO2peak) and a 45-minute riding session based upon a British Horse Society Stage 2 riding lesson (including walking, trotting, cantering and work without stirrups). Oxygen consumption (VO2), from which metabolic equivalent (MET) and energy expenditure values were derived, was measured throughout.

Results:

The mean VO2 requirement for trotting/cantering (18.4 ± 5.1 ml·kg-1·min-1; 52 ± 12% VO2peak; 5.3 ± 1.1 METs) was similar to walking/trotting (17.4 ± 5.1 ml·kg-1·min-1; 48 ± 13% VO2peak; 5.0 ± 1.5 METs) and significantly higher than for work without stirrups (14.2 ± 2.9 ml·kg-1·min-1; 41 ± 12% VO2peak; 4.2 ± 0.8 METs) (P = .001).

Conclusion:

The oxygen cost of different activities typically performed in a recreational horse riding session meets the criteria for moderate intensity exercise (3-6 METs) in females, and trotting combined with cantering imposes the highest metabolic demand. Regular riding could contribute to the achievement of the public health recommendations for physical activity in this population.

Restricted access

Kenneth R. Turley and Jack H. Wilmore

This study investigated whether cardiovascular responses at a given submaximal oxygen consumption (V̇O2, L · min-1) are different between the treadmill (TM) and cycle ergometer (CE). Submaximal cardiovascular measurements were obtained at three work rates on both the TM and CE in 7- to 9-year-old children (12 males and 12 females). Using regression analysis, it was determined that there were no differences between the TM and CE in cardiac output (L · min-1), stroke volume (SV, ml · beat-1) or heart rate (beats · min-1) at a given V̇O2 (L · min-1). There were differences in the total peripheral resistance (TPR, units) and arterial-venous oxygen difference (a-vO2 diff, ml · 100 ml-1) to V̇O2 (L · min-1) relationship. While there were statistically significant differences in TPR and a-vO2 diff between the two modalities, there was substantial overlap of individual values at any given submaximal V̇O2, thus the physiological significance is questionable. Hence, we conclude that in 7- to 9-yearold children there are no differences in submaximal cardiovascular responses between the CE and TM.

Restricted access

Sigurbjörn Árni Arngrímsson, Torarinn Sveinsson and Erlingur Jóhannsson

The purpose of this study was to validate an equation that has been used to predict peak oxygen uptake (VO2peak) and, if invalid, to develop a new equation predicting VO2peak from performance on a cycle ergometer test. Forty-five 9- and 15-year-old children underwent a VO2peak test and were randomized into developmental (DEV) and cross-validation (C-V) groups. The equation under validation, which requires knowledge of resting energy expenditure (REE), underestimated VO2peak (p < .05), but once adjusted with a new parameter calculated in DEV, it cross-validated well (r YY′ = .98, SE = .18 L · min−1). The accuracy of a new prediction equation built in DEV, not using REE, was confirmed in C-V (r YY′ = .98, SE = .17 L · min−1) and the slope and intercept were not different from the line of identity (p < .05). VO2peak in schoolchildren can be predicted with good accuracy from an equation based on the whole sample [VO2peak′ = −1.5986 + 0.0115 · (maximal power output) + 0.0109 · (mass) + 0.1313 · (gender) + 0.0085 · (maximal heart rate)].