Search Results

You are looking at 141 - 150 of 973 items for :

  • "body composition" x
Clear All
Restricted access

Bruce Wayne Bailey, Pamela Borup, Larry Tucker, James LeCheminant, Matthew Allen and Whitney Hebbert

Background:

The aim of this study was to investigate the relationship between steps per day and adiposity among college women.

Methods:

This study was cross-sectional and included women ages 18–25. Participants wore a pedometer for 7 consecutive days. Body composition was assessed using air-displacement plethysmography. Height, weight, and waist and hip circumferences were assessed.

Results:

The women took 10,119 ± 2836 steps per day. When divided into quartiles by steps, the top 2 quartiles of women in the study had significantly lower BMI, percent body fat, and waist and hip circumferences than the bottom quartile of women (P ≤ .05). Percent body fat was different between the bottom 2 quartiles and the top 2 quartiles (P ≤ .05). The odds of having a body fat of greater than 32% were reduced by 21.9% for every increase of 1,000 steps taken per day (P ≤ .05).

Conclusions:

Steps per day are related to body composition in young adult women, but this relationship weakens with progressively higher step counts. A reasonable recommendation for steps in young adult women that is associated with the lowest BMIs and body fat seems to be between 10,000–12,000 steps per day.

Restricted access

Beau Kjerulf Greer, Kathleen M. Edsall and Anna E. Greer

The purpose of the current study was to determine whether expected changes in body weight via a 3-day low-carbohydrate (LC) diet will disrupt the reliability of air displacement plethysmography measurements via BOD POD. Twenty-four subjects recorded their typical diets for 3 days before BOD POD and 7-site skinfold analyses. Subjects were matched for lean body mass and divided into low-CHO (LC) and control (CON) groups. The LC group was given instruction intended to prevent more than 50 grams/day of carbohydrate consumption for 3 consecutive days, and the CON group replicated their previously recorded diet. Body composition measurements were repeated after dietary intervention. Test–retest reliability measures were significant (p < .01) and high for body fat percentage in both the LC and the CON groups (rs = .993 and .965, respectively). Likewise, skinfold analysis for body fat percentage reliability was high in both groups (rs = .996 and .997, respectively). There were significant differences between 1st and 2nd BOD POD measurements for body mass (72.9 ± 13.3 vs. 72.1 ± 13.0 kg [M ± SD]) and body volume (69.0 ± 12.7–68.1 ± 12.2 L) in the LC group (p < .05). However, there were no differences (p > .05) in BOD POD–determined body fat percentage, lean body mass, or fat mass between the 1st and 2nd trial in either group. Body composition measures via BOD POD and 7-site skinfolds remain reliable after 3 days of an LC diet despite significant decreases in body mass.

Restricted access

Thomas B. Walker, Jessica Smith, Monica Herrera, Breck Lebegue, Andrea Pinchak and Joseph Fischer

The purpose of this study was to investigate the ability of whey-protein and leucine supplementation to enhance physical and cognitive performance and body composition. Thirty moderately fit participants completed a modified Air Force fitness test, a computer-based cognition test, and a dual-energy X-ray-absorptiometry scan for body composition before and after supplementing their daily diet for 8 wk with either 19.7 g of whey protein and 6.2 g leucine (WPL) or a calorie-equivalent placebo (P). Bench-press performance increased significantly from Week 1 to Week 8 in the WPL group, whereas the increase in the P group was not significant. Push-up performance increased significantly for WPL, and P showed a nonsignificant increase. Total mass, fat-free mass, and lean body mass all increased significantly in the WPL group but showed no change in the P group. No differences were observed within or between groups for crunches, chin-ups, 3-mile-run time, or cognition. The authors conclude that supplementing with whey protein and leucine may provide an advantage to people whose performance benefits from increased upper body strength and/or lean body mass.

Restricted access

Pavle Mikulic

Purpose:

To examine variations in physical, physiological, and performance parameters over an annual training cycle in a world champion rowing crew.

Methods:

Four world-class rowers, all of them members of the men’s heavyweight quadruple sculls squad who are current world rowing champions, were assessed 3 times at regular 4-mo intervals during the 2011 season (November 2010, March 2011, and July 2011). Physical assessments included stature, body mass, body composition, whereas physiological and performance assessments obtained during an incremental rowing ergometer test to exhaustion included maximum oxygen uptake and anaerobic gas-exchange threshold with corresponding power output values.

Results:

Body mass (∼95 kg) and body composition (∼12% body fat) remained stable over the annual training cycle. Power output at anaerobic gas-exchange threshold increased +16% from November to July, whereas the corresponding oxygen uptake, expressed as a percentage of maximum oxygen uptake, increased from 83% to 90%. Maximum oxygen uptake decreased from 6.68 L/min in November to 6.10 L/min in March before rising to 6.51 L/min in July. The corresponding power output increased steadily from 450 W to 481 W.

Conclusion:

Seasonal variation in body mass and body composition of 4 examined world-class rowers was minimal. Oxygen uptake and power output corresponding to anaerobic threshold continuously increased from off-season to peak competition season. Seasonal variation in maximum oxygen uptake reached ∼10%; however, it remained above 6 L/min, that is, the value consistently observed in top caliber heavyweight rowers regardless of the time of the assessment.

Restricted access

Jennifer W. Bea, Robert M. Blew, Carol Howe, Megan Hetherington-Rauth and Scott B. Going

Purpose:

This systematic review evaluates the relationship between resistance training and metabolic function in youth.

Methods:

PubMed, Embase, Cochrane Library, Web of Science, CINAHL, and ClinicalTrials. gov were searched for articles that (1): studied children (2); included resistance training (3); were randomized interventions; and (4) reported markers of metabolic function. The selected studies were analyzed using the Cochrane Risk-of-Bias Tool.

Results:

Thirteen articles met inclusion criteria. Mean age ranged from 12.2 to 16.9 years, but most were limited to high school (n = 11) and overweight/obese (n = 12). Sample sizes (n = 22–304), session duration (40–60min), and intervention length (8–52 wks) varied. Exercise frequency was typically 2–3 d/wk. Resistance training was metabolically beneficial compared with control or resistance plus aerobic training in 5 studies overall and 3 out of the 4 studies with the fewest threats to bias (p ≤ .05); each was accompanied by beneficial changes in body composition, but only one study adjusted for change in body composition.

Conclusions:

Limited evidence suggests that resistance training may positively affect metabolic parameters in youth. Well-controlled resistance training interventions of varying doses are needed to definitively determine whether resistance training can mitigate metabolic dysfunction in youth and whether training benefits on metabolic parameters are independent of body composition changes.

Restricted access

Christie L. Ward, Rudy J. Valentine and Ellen M. Evans

Adiposity, lean mass, and physical activity (PA) are known to influence physical function in older adults, although the independent influences are not completely characterized. Older adults (N = 156, M age = 68.9 ± 6.7 yr, 85 men) were assessed for body composition via dual-energy X-ray absorptiometry, PA by accelerometer, and physical function via timed up-and-go (UP&GO), 30-s chair stand, 6-min walk (6-min WALK), and Star-Excursion Balance Test. In the absence of percentage-body-fat by PA interactions (p > .05), main effects existed such that a higher percentage body fat was associated with poorer performance in UP&GO, 30-s chair stand, and 6-min WALK (p < .05). No significant main effects were found for PA and functional performance. Adiposity explains 4.6–11.4% in physical functional variance (p < .05). Preventing increases in adiposity with age may help older adults maintain functional independence.

Restricted access

Heidi K. Byrne and Jack H. Wilmore

The present cross-sectional study was designed to investigate the relationship between exercise training and resting metabolic rate (RMR). The focus of this investigation was to compare RMR in aerobically trained (AT), resistance trained (RT), and untrained (UNT) women. Subjects were also classified as highly trained (HT), moderately trained (MT), or untrained (UNT) in order to examine the relationship between RMR and level of training. Sixty-one women between the ages of 18 and 46 years volunteered to serve as subjects in this study. Each subject completed measurements of body composition, maximal oxygen uptake (V̇O2max), and two consecutive measurements of RMR. The data presented show that there was no significant difference in resting metabolic rate between resistance-trained, aerobically trained, and control subjects. However, when grouped by intensity of training, there was a trend for an increased resting metabolic rate (kcal/day) in the highly trained subjects, regardless of mode of training.

Restricted access

Eric T. Poehlman and Christopher Melby

In this brief review we examine the effects of resistance training on energy expenditure. The components of daily energy expenditure are described, and methods of measuring daily energy expenditure are discussed. Cross-sectional and exercise intervention studies are examined with respect to their effects on resting metabolic rate, physical activity energy expenditure, postexercise oxygen consumption, and substrate oxidation in younger and older individuals. Evidence is presented to suggest that although resistance training may elevate resting metabolic rate, il does not substantially enhance daily energy expenditure in free-living individuals. Several studies indicate that intense resistance exercise increases postexercise oxygen consumption and shifts substrate oxidation toward a greater reliance on fat oxidation. Preliminary evidence suggests that although resistance training increases muscular strength and endurance, its effects on energy balance and regulation of body weight appear to be primarily mediated by its effects on body composition (e.g., increasing fat-free mass) rather than by the direct energy costs of the resistance exercise.

Restricted access

Robert C. Eklund and Sally Crawford

The purpose of this investigation was to replicate and extend Crawford and Eklund's (1994) investigation of social physique anxiety (SPA) and exercise. Women (N = 94) enrolled in physical education activity or major classes participated in the investigation. Data were collected on SPA, weight satisfaction, percent body fat, reasons for exercise, exercise behaviors and preferences, and attitudes toward two aerobic class video presentations featuring a manipulation of physique salience. Consistent with the previous investigation, self-presentational reasons for exercise (body tone, weight control, and physical attractiveness) were positively associated with SPA in both simple correlations and hierarchical analyses controlling for body composition. In contrast to previous findings, SPA was not associated with favorability of attitudes toward either of the video presentations. The inability to fully replicate Crawford and Eklund's (1993) findings raised interesting questions with regard to variables that may moderate or mediate self-presentational anxiety in exercise settings.

Restricted access

David Travis Thomas, Laurie Wideman and Cheryl A. Lovelady

Purpose:

To examine the effect of yogurt supplementation pre- and postexercise on changes in body composition in overweight women engaged in a resistance-training program.

Methods:

Participants (age = 36.8 ± 4.8 yr) with a body-mass index of 29.1±2.1 kg/m2 were randomized to yogurt supplement (YOG; n = 15) or isoenergetic sucrose beverage (CONT; n = 14) consumed before and after exercise for 16 wk. Participants were also instructed to reduce energy intake daily (–1,046 kJ) during the study. Body composition was assessed by dual-energy X-ray absorptiometry, waist circumference, and sagittal diameter. Strength was measured with 1-repetition maximum. Dietary recalls were obtained by a multipass approach using Nutrition Data System software. Insulin-like growth factor-1 and insulin-like growth-factor-binding protein-3 were measured with ELISA.

Results:

Significant weight losses of 2.6 ± 4.5 kg (YOG) and 1.2 ± 2.5 kg (CONT) were observed. Total lean weight increased significantly over time in both YOG (0.8 ± 1.2 kg) and CONT (1.1 ± 0.9 kg). Significant reductions in total fat (YOG = 3.4 ± 4.1 kg vs. CONT = 2.3 ± 2.4 kg) were observed over time. Waist circumference, sagittal diameter, and trunk fat decreased significantly over time without group differences. Both groups significantly decreased energy intake while maintaining protein intake. Strength significantly increased over time in both groups. No changes over time or between groups were observed in hormone levels.

Conclusions:

These data suggest that yogurt supplementation offered no added benefit for increasing lean mass when combined with resistance training and modest energy restriction.