Search Results

You are looking at 141 - 150 of 883 items for :

Clear All
Restricted access

Matthew C. Hoch, David R. Mullineaux, Richard D. Andreatta, Robert A. English, Jennifer M. Medina-McKeon, Carl G. Mattacola and Patrick O. McKeon

Context:

A single talocrural joint-mobilization treatment has improved spatiotemporal measures of postural control but not ankle arthrokinematics in individuals with chronic ankle instability (CAI). However, the effects of multiple treatment sessions on these aspects of function have not been investigated.

Objective:

To examine the effect of a 2-wk anterior-to-posterior joint-mobilization intervention on instrumented measures of single-limb-stance static postural control and ankle arthrokinematics in adults with CAI.

Design:

Repeated measures.

Setting:

Research laboratory.

Participants:

12 individuals with CAI (6 male, 6 female; age 27.4 ± 4.3 y, height 175.4 ± 9.78 cm, mass 78.4 ± 11.0 kg).

Intervention:

Subjects received 6 treatments sessions of talocrural grade II joint traction and grade III anterior-to-posterior joint mobilization over 2 wk.

Main Outcome Measures:

Instrumented measures of single-limb-stance static postural control (eyes open and closed) and anterior and posterior talar displacement and stiffness were assessed 1 wk before the intervention (baseline), before the first treatment (preintervention), 24–48 h after the final treatment (postintervention), and 1 wk later (1-wk follow-up). Postural control was analyzed as center-of-pressure velocity, center-of-pressure range, the mean of time-to-boundary minima, and standard deviation of time-to-boundary minima in the anteroposterior and mediolateral directions for each visual condition.

Results:

No significant differences were identified in any measures of postural control (P > .08) or ankle arthrokinematics (P > .21).

Conclusions:

The 2-wk talocrural joint-mobilization intervention did not alter instrumented measures of single-limb-stance postural control or ankle arthrokinematics. Despite the absence of change in these measures, this study continues to clarify the role of talocrural joint mobilization as a rehabilitation strategy for patients with CAI.

Restricted access

Kyung-Min Kim, Christopher D. Ingersoll and Jay Hertel

Context:

Focal ankle-joint cooling (FAJC) has been shown to increase Hoffmann (H) reflex amplitudes of select leg muscles while subjects lie prone, but it is unknown whether the neurophysiological cooling effects persist in standing.

Objective:

To assess the effects of FAJC on H-reflexes of the soleus and fibularis longus during 3 body positions (prone, bipedal, and unipedal stances) in individuals with and without chronic ankle instability (CAI).

Design:

Crossover.

Setting:

Laboratory.

Participants:

15 young adults with CAI (9 male, 6 female) and 15 healthy controls.

Intervention:

All subjects received both FAJC and sham treatments on separate days in a randomized order. FAJC was accomplished by applying a 1.5-L plastic bag filled with crushed ice to the ankle for 20 min. Sham treatment involved room-temperature candy corn.

Main Outcome Measures:

Maximum amplitudes of H-reflexes and motor (M) waves were recorded while subjects lay prone and then stood in quiet bipedal and unipedal stances before and immediately after each treatment. Primary outcome measures were Hmax:Mmax ratios for the soleus and fibularis longus. Three-factor (group × treatment condition × time) repeated-measures ANOVAs and Fisher LSD tests were performed for statistical analyses.

Results:

Significant interactions of treatment condition by time for prone Hmax:Mmax ratios were found in the soleus (P = .001) and fibularis longus (P = .003). In both muscles, prone Hmax:Mmax ratios moderately increased after FAJC but not after sham treatment. The CAI and healthy groups responded similarly to FAJC. In contrast, there were no significant interactions or main effects in the bipedal and unipedal stances in either muscle (P > .05).

Conclusions:

FAJC moderately increased H-reflex amplitudes of the soleus and fibularis longus while subjects were prone but not during bipedal or unipedal standing. These results were not different between groups with and without CAI.

Restricted access

Karen P. DePauw and Gudrun Doll-Tepper

Inclusion has been a topic of discussions and debate among adapted physical activity professionals since the 1980s. Although the initial discussions focused primarily on inclusion as a place or placement, the discourse today about inclusion must be expanded to incorporate issues of context, disability rights, and social justice. Inclusion must now be reconceptualized as an attitude or a process. Progressive inclusion and acceptance is not a myth but a reality. As international attention and efforts are focused on physical education as a right of all children, APA professionals must forego bandwagons and adopt a strong philosophical stance that guides our efforts toward achieving inclusive physical education.

Open access

Matthew C. Hoch, David R. Mullineaux, Kyoungkyu Jeon and Patrick O. McKeon

Single joint kinematic alterations have been identified during gait in those with chronic ankle instability (CAI). The purpose of this study was to compare sagittal plane hip, knee, and ankle kinematics during walking in participants with and without CAI. Twelve individuals with CAI and 12 healthy individuals walked on a treadmill at 1.5 m/s. Three-dimensional kinematics were analyzed using mean ensemble curves and independent t tests. Participants with CAI demonstrated less lower extremity flexion during the absorption phase of stance and the limb placement phase of swing, which may have implications for limb placement at initial contact.

Restricted access

Dana Forrest, Janet S. Dufek and John A. Mercer

The purpose of this study was to determine if ground reaction forces were influenced by shoe design (adult vs. youth) for female children when running. Subjects (n = 10, 12.0 ± 1.1 years old; 154 ± 4.9 cm; 46.2 ± 14.3 kg; shoe size 3.5–7 youth) were fit with a shoe model available in youth and adult sizes. Subjects ran 10 trials per shoe condition across a force platform placed in the middle of a 9-m runway. Impact force, second maximum force, loading rate, stance time and average vertical ground reaction forces were recorded for each trial. Shoes underwent a mechanical impact test with peak force, peak acceleration, and percent energy returned recorded. Each variable was compared between shoe conditions. From the impact testing, it was determined that peak force, peak acceleration and percent energy return were 7.1%, 7.1%, and 18.9% greater, respectively, for the youth vs. adult shoe (p < .001). From the running tests, it was determined that loading rate was different (p = .009) between shoe conditions whereas impact force, second maximum force, average force and stance time were not different between shoes (p > .01). Young girls had a greater loading rate when running in youth vs. adult shoes even though the shoe size was the same.

Restricted access

Jeffrey M. Haddad, Jeff L. Gagnon, Christopher J. Hasson, Richard E.A. Van Emmerik and Joseph Hamill

Postural stability has traditionally been examined through spatial measures of the center of mass (CoM) or center of pressure (CoP), where larger amounts of CoM or CoP movements are considered signs of postural instability. However, for stabilization, the postural control system may utilize additional information about the CoM or CoP such as velocity, acceleration, and the temporal margin to a stability boundary. Postural time-to-contact (TtC) is a variable that can take into account this additional information about the CoM or CoP. Postural TtC is the time it would take the CoM or CoP, given its instantaneous trajectory, to contact a stability boundary. This is essentially the time the system has to reverse any perturbation before stance is threatened. Although this measure shows promise in assessing postural stability, the TtC values derived between studies are highly ambiguous due to major differences in how they are calculated. In this study, various methodologies used to assess postural TtC were compared during quiet stance and induced-sway conditions. The effects of the different methodologies on TtC values will be assessed, and issues regarding the interpretation of TtC data will also be discussed.

Restricted access

Daniel Maykranz, Sten Grimmer and Andre Seyfarth

The work-loop method is frequently used to determine the mechanical work performed by a system, for instance, when analyzing muscles or describing the work balance at the joint level. While for these examples usually only one-dimensional movements are investigated, for two- or three-dimensional movements, such as leg function during walking and running, the work-loop has to be adapted. In this paper, we present an analytical derivation that extends the work-loop method to two-dimensional sagittal plane movements. Three effects contribute to the mechanical work of the leg: (1) forces directed along the leg axis, (2) forces acting perpendicular to the leg axis, and (3) a shift of the center of pressure (COP) during stance. These three contributors to the mechanical work performed can be interpreted as three general tasks of the leg. To demonstrate the new work-loop method, we analyzed experimental data on hopping, running and walking. The results indicate that the proposed new generalized work-loop concept is suitable for describing the overall mechanical work performed on the COM during stance with energy consistent net work balances. Depending on the type of gait, specific contributions of each work term were found that characterize leg function during locomotion.

Restricted access

Young-Hoo Kwon, Lonn Hutcheson, Jeffrey B. Casebolt, Joong-Hyun Ryu and Kunal Singhal

The purpose of this study was to investigate the effects of transversely sloped ballasted walking surface on gait and rearfoot motion (RFM) parameters. Motion analysis was performed with 20 healthy participants (15 male and 5 female) walking in six surface-slope conditions: two surfaces (solid and ballasted) by three slopes (0, 5, and 10 degrees). The gait parameters (walking velocity, step length, step rate, step width, stance time, and toe-out angle) showed significant surface effect (p = .004) and surface-slope interaction (p = .017). The RFM motion parameters (peak everted/inverted position, eversion/inversion velocity, and acceleration) revealed significant surface (p = .004) and slope (p = .024) effects. The ballasted conditions showed more cautious gait patterns with lower walk velocity, step length, and step rate and longer stance time. In the RFM parameters, the slope effect was more notable in the solid conditions due to the gait adaptations in the ballasted conditions. Ballast conditions showed reduced inversion and increased eversion and RFM range. The RFM data were comparable to other typical walking conditions but smaller than those from running.

Restricted access

Semyon Slobounov, Tao Wu and Mark Hallett

Human upright posture is a product of a complex dynamic system that relies on integration of input from multimodal sensory sources. Extensive research has explored the role of visual, vestibular, and somatosensory systems in the control of upright posture. However, the role of higher cognitive function in a participant’s assessment of postural stability has been less studied. In previous research, we showed specific neural activation patterns in EEG associated with recognition of unstable postures in young healthy participants. Similar EEG patterns have been recently observed in regulation of posture equilibrium in dynamic stances. This article evaluates participants’ postural stability in dynamic stances and neural activation patterns underlying visual recognition of unstable postures using event-related functional MRI (fMRI). Our results show that the “stable” participants were successful in recognition of unstable postures of a computer-animated body model and experienced egocentric motion. Successful recognition of unstable postures in these participants induces activation of distinct areas of the brain including bilateral parietal cortex, anterior cingulate cortex, and bilateral cerebellum. In addition, significant activation is observed in basal ganglia (caudate nucleus and putamen) but only during perception of animated postures. Our findings suggest the existence of modality-specific distributed activation of brain areas responsible for detection of postural instability.

Restricted access

Gurtej S. Grewal, Rachel Baisch, Jacqueline Lee-Eng, Stephaine Wu, Beth Jarrett, Neil Humble and Bijan Najafi

Context:

Improvements in postural stability in figure skaters can play a significant role in performance, as well as reducing fall risk.

Objective:

To explore the effect of custom foot insoles on postural stability in advanced figure skaters.

Design:

Exploratory study.

Setting:

Out of laboratory.

Participants:

Nine advanced figure skaters were recruited and 7 completed the study (age 38 ± 18.5 y, body-mass index 25 ± 3.6 kg/m2).

Intervention:

Custom foot insoles.

Main Outcome Measures:

Primary outcome of changes in postural stability (PS) quantified by center-of-mass sway with secondary outcomes of ankleand hip-joint sway and joint range of motion. Sway measurements were assessed using body-worn sensors while participants wore skates on ice. PS was assessed in single-leg stance, as well as during gliding on the dominant foot.

Results:

A significant improvement in static PS was observed after 6-wk use of custom insoles. Center-of-mass sway reduced significantly on average by 48.44% (P = .023), and ankle-joint sway reduced by 45.7% (P = .05) during single-leg-stance balance measurements. During the gliding maneuver nonsignificant changes were observed for both ankle- and knee-joint range of motion.

Conclusion:

The results of this study suggest proof of concept toward benefits of custom insoles in improving postural stability in advanced figure skaters. To generalize the findings, randomized controlled trials with larger sample sizes are warranted.