Search Results

You are looking at 141 - 150 of 394 items for :

  • "vertical jump" x
Clear All
Restricted access

Christie Tangalos, Samuel J. Robertson, Michael Spittle and Paul B. Gastin

Context:

Player match statistics in junior Australian football (AF) are not well documented, and contributors to success are poorly understood. A clearer understanding of the relationships between fitness and skill in younger players participating at the foundation level of the performance pathway in AF has implications for the development of coaching priorities (eg, physical or technical).

Purpose:

To investigate the relationships between indices of fitness (speed, power, and endurance) and skill (coach rating) on player performance (disposals and effective disposals) in junior AF.

Methods:

Junior male AF players (N = 156, 10–15 y old) were recruited from 12 teams of a single amateur recreational AF club located in metropolitan Victoria. All players were tested for fitness (20-m sprint, vertical jump, 20-m shuttle run) and rated by their coach on a 6-point Likert scale for skill (within a team in comparison with their teammates). Player performance was assessed during a single match in which disposals and their effectiveness were coded from a video recording.

Results:

Coach rating of skill displayed the strongest correlations and, combined with 20-m shuttle test, showed a good ability to predict the number of both disposals and effective disposals. None of the skill or fitness attributes adequately explained the percentage of effective disposals. The influence of team did not meaningfully contribute to the performance of any of the models.

Conclusions:

Skill development should be considered a high priority by coaches in junior AF.

Restricted access

Avery D. Faigenbaum, James E. McFarland, Neil A. Kelly, Nicholas A. Ratamess, Jie Kang and Jay R. Hoffman

The purpose of this study was to examine the influence of recovery time following a dynamic warm-up (DY) and a static stretch warm-up (SS) on power performance in adolescent athletes. Following baseline measures, 19 males (16.5 ± 1.1 yrs) performed the vertical jump (VJ) and seated medicine ball toss (MB) at the following time points after DY and SS: 2, 6, 10, 14, 18, 22 min. Analysis of variance revealed that VJ was significantly greater following DY than SS at 2, 6, 10, 14 and 18 min. Main effects indicated a significant increase in VJ from baseline at 2 and 6 min following DY (2.6–3.9%) and a significant decrease in VJ from baseline at 2, 6, 10, 14 and 18 min following SS (–3.2% to –7.0%). No significant interaction effects between DY and SS were observed for MB. These findings indicate that lower body power performance in male adolescent athletes can be enhanced following DY as compared with SS during the first 18 min of the post warm-up period.

Restricted access

Susumu S. Sawada, I-Min Lee, Hisashi Naito, Koji Tsukamoto, Takashi Muto and Steven N. Blair

Background:

Limited data are available on the relationship between muscular and performance fitness (MPF) and the incidence of type 2 diabetes.

Methods:

A cohort of 3792 Japanese men completed a medical examination that included MPF and cardiorespiratory fitness tests. MPF index composite score was calculated using Z-scores from vertical jump, sit-ups, side step, and functional reach tests.

Results:

The mean follow-up period was 187 months (15.6 years). There were 240 patients who developed type 2 diabetes during follow-up. Relative risks and 95% confidence intervals (CI) for incidence of diabetes across baseline quartiles of MPF index composite score were obtained using the Cox proportional hazards model while adjusting for age, BMI, diastolic blood pressure, cigarette smoking, alcohol intake, and family history of diabetes. The relative risks for developing diabetes across quartiles of MPF index composite scores (lowest to highest) were 1.0 (referent), 1.15 (95% CI 0.83−1.60), 1.10 (0.78−1.55), and 0.57 (0.37−0.90) (P for trend = .061). These results were attenuated after adjustment for cardiorespiratory fitness (P for trend = .125).

Conclusions:

This prospective study suggests that MPF is a predictor of type 2 diabetes, although its predictive ability was attenuated after adjusting for cardiorespiratory fitness.

Restricted access

Bruno Marrier, Yann Le Meur, Julien Robineau, Mathieu Lacome, Anthony Couderc, Christophe Hausswirth, Julien Piscione and Jean-Benoît Morin

Purpose:

To compare the sensitivity of a sprint vs a countermovement-jump (CMJ) test after an intense training session in international rugby sevens players, as well as analyze the effects of fatigue on sprint acceleration.

Methods:

Thirteen international rugby sevens players completed two 30-m sprints and a set of 4 repetitions of CMJ before and after a highly demanding rugby sevens training session.

Results:

Change in CMJ height was unclear (–3.6%; ±90% confidence limits 11.9%. Chances of a true positive/trivial/negative change: 24/10/66%), while a very likely small increase in 30-m sprint time was observed (1.0%; ±0.7%, 96/3/1%). A very likely small decrease in the maximum horizontal theoretical velocity (V0) (–2.4; ±1.8%, 1/4/95%) was observed. A very large correlation (r = –.79 ± .23) between the variations of V0 and 30-m-sprint performance was also observed. Changes in 30-m sprint time were negatively and very largely correlated with the distance covered above the maximal aerobic speed (r = –.71 ± .32).

Conclusions:

The CMJ test appears to be less sensitive than the sprint test, which casts doubts on the usefulness of a vertical-jump test in sports such as rugby that mainly involve horizontal motions. The decline in sprint performance relates more to a decrease in velocity than in force capability and is correlated with the distance covered at high intensity.

Restricted access

Andrew C. Fry, William J. Kraemer, Michael H. Stone, Beverly J. Warren, Jay T. Kearney, Carl M. Maresh, Cheryl A. Weseman and Steven J. Fleck

To examine the effects of 1 week of high volume weightlifting and amino acid supplementation, 28 elite junior male weightlifting received either amino acid (protein) or lactose (placebo) capsules using double-blind procedures. weightlifting test sessions were performed before and after 7 days of high volume training sessions. Serum concentrations of testosterone (Tes), cortisol (Cort), and growth hormone (GH) as well as whole blood iactate (HLa) were determined from blood draws. Lifting performance was not altered for either group after training, although vertical jump performance decreased for both groups. Both tests elicited significantly elevated exercise-induced hormonal and HLa concentrations. Significant decreases in postexercise hormonal and HLa concentrations from Test 1 to Test 2 were observed for both groups. Tes concentrations at 7 a.m. and preexercise decreased for both groups from Test 1 to Test 2, while the placebo group exhibited a decreased 7 a.m. Tes/ Cort. These data suggest that amino acid supplementation does not influence resting or exercise-induced hormonal responses to 1 week of high volume weight training, but endocrine responses did suggest an impending overtraining syndrome.

Restricted access

Kevin R. Ford, Christopher A. DiCesare, Gregory D. Myer and Timothy E. Hewett

Context: Biofeedback training enables an athlete to alter biomechanical and physiological function by receiving biomechanical and physiological data concurrent with or immediately after a task. Objective: To compare the effects of 2 different modes of real-time biofeedback focused on reducing risk factors related to anterior cruciate ligament injury. Design: Randomized crossover study design. Setting: Biomechanics laboratory and sports medicine center. Participants: Female high school soccer players (age 14.8 ± 1.0 y, height 162.6 ± 6.8 cm, mass 55.9 ± 7.0 kg; n = 4). Intervention: A battery of kinetic- or kinematic-based real-time biofeedback during repetitive double-leg squats. Main Outcome Measures: Baseline and posttraining drop vertical jumps were collected to determine if either feedback method improved high injury risk landing mechanics. Results: Maximum knee abduction moment and angle during the landing was significantly decreased after kinetic-focused biofeedback (P = .04). The reduced knee abduction moment during the drop vertical jumps after kinematic-focused biofeedback was not different (P = .2). Maximum knee abduction angle was significantly decreased after kinetic biofeedback (P < .01) but only showed a trend toward reduction after kinematic biofeedback (P = .08). Conclusions: The innovative biofeedback employed in the current study reduced knee abduction load and posture from baseline to posttraining during a drop vertical jump.

Restricted access

Senshi Fukashiro, Dean C. Hay and Akinori Nagano

This paper reviews the research findings regarding the force and length changes of the muscle-tendon complex during dynamic human movements, especially those using ultrasonography and computer simulation. The use of ultrasonography demonstrated that the tendinous structures of the muscle-tendon complex are compliant enough to influence the biomechanical behavior (length change, shortening velocity, and so on) of fascicles substantially. It was discussed that the fascicles are a force generator rather than a work generator; the tendinous structures function not only as an energy re-distributor but also as a power amplifier, and the interaction between fascicles and tendinous structures is essential for generating higher joint power outputs during the late pushoff phase in human vertical jumping. This phenomenon could be explained based on the force-length/velocity relationships of each element (contractile and series elastic elements) in the muscle-tendon complex during movements. Through computer simulation using a Hill-type muscle-tendon complex model, the benefit of making a countermovement was examined in relation to the compliance of the muscle-tendon complex and the length ratio between the contractile and series elastic elements. Also, the integral roles of the series elastic element were simulated in a cyclic human heel-raise exercise. It was suggested that the storage and reutilization of elastic energy by the tendinous structures play an important role in enhancing work output and movement efficiency in many sorts of human movements.

Restricted access

Jason D. Vescovi, Teena M. Murray and Jaci L. VanHeest

Purpose:

The primary purpose of this study was to determine whether positional profiling is possible for elite ice hockey players by examining anthropometric characteristics and physiological performance. In addition, performance ranges and percentiles were determined for each position (forwards, defensemen, and goalkeepers) on all dependent variables.

Methods:

A retrospective, cross-sectional study design was used with performance data from ice hockey players (mean age = 18.0 ± 0.6 years) attending the 2001 (n = 74), 2002 (n = 84), and 2003 (n = 92) Combines. Four anthropometric characteristics and 12 performance tests were the dependent variables. A 3 × 3 (position × year) 2-way ANOVA was used to determine whether any significant interactions were present. No significant interactions were observed, so the data were collapsed over the 3-year period and positional characteristics were analyzed using a 1-way ANOVA.

Results:

Defenders were heavier and/or taller compared with the other 2 positions (P ≤ .01), whereas goalkeepers showed greater body-fat percentage compared with that of forwards (P = .001). It was found that goalkeepers had significantly lower strength measures for the upper body (P ≤ .043) and lower anaerobic capacity (P ≤ .039) values compared with at least one other position, but they had greater flexibility (P ≤ .013). No positional differences were observed for the broad jump, vertical jump, aerobic power, or curl-ups.

Conclusion:

The current findings provide evidence supporting the use of anthropometric measurements, upper body strength, and anaerobic capacity to effectively distinguish among positions for elite-level ice hockey players.

Restricted access

Michael H. Stone, Kimberly Sanborn, Lucille L. Smith, Harold S. O'Bryant, Tommy Hoke, Alan C. Utter, Robert L. Johnson, Rhonda Boros, Joseph Hruby, Kyle C. Pierce, Margaret E. Stone and Brindley Garner

The purpose of this investigation was to study the efficacy of two dietary supplements on measures of body mass, body composition, and performance in 42 American football players. Group CM (n = 9) received creatine monohy-drate, Group P (n = 11) received calcium pyruvate. Group COM (n = 11) received a combination of calcium pyruvate (60%) and creatine (40%), and Group PL received a placebo. Tests were performed before (Tl) and after (T2) the 5-week supplementation period, during which the subjects continued their normal training schedules. Compared to P and PL. CM and COM showed significantly greater increases for body mass, lean body mass, 1 repetition maximum (RM) bench press, combined 1 RM squat and bench press, and static vertical jump (SVJ) power output. Peak rate of force development for SVJ was significantly greater for CM compared to P and PL. Creatine and the combination supplement enhanced training adaptations associated with body mass/composition, maximum strength, and SVJ; however, pyruvate supplementation alone was ineffective.

Restricted access

Avery D. Faigenbaum, Laurie Milliken, Lucas Moulton and Wayne L. Westcott

The purpose of this study was to compare early muscular fitness adaptations in children in response to low repetition maximum (LRM) and high repetition maximum (HRM) resistance training. Twenty-three girls and 20 boys between the ages of 8.0 and 12.3 years (mean age 10.6 ± 1.3 years) volunteered to participate in this study. Children performed one set of 6 to 10 RM (n = 12) or one set of 15 to 20 RM (n = 19) on child-size exercise machines twice weekly over 8 weeks. Children in the control group (n = 12) did not resistance train. Maximum strength (1 RM) on the chest press, local muscular endurance (15 RM) on the leg press, long jump, vertical jump, and v-sit flexibility were assessed at baseline and posttraining. The LRM and HRM groups made significantly greater gains in 1-RM strength (21% and 23%, respectively) as compared with the control group (1%). Only the HRM group made significantly greater gains in 15-RM local muscular endurance (42%) and flexibility (15%) than that recorded in the control group (4% and 5%, respectively). If children perform one set per exercise as part of an introductory resistance training program, these findings favor the prescription of a higher RM training range.