Search Results

You are looking at 151 - 160 of 278 items for :

Clear All
Open access

D. Enette Larson-Meyer, Kathleen Woolf and Louise Burke

protocol. Failing to do so may compromise the effectiveness of the supplementation protocol and could lead to excess vitamin and mineral intakes and/or food-drug interactions. This paper summarizes the comprehensive assessment of an individual athlete’s nutritional status, using the traditional “A

Open access

Graeme L. Close, Craig Sale, Keith Baar and Stephane Bermon

skeletal muscle injury are summarized in Table  1 . Table 1 Nutritional Strategies Claimed to Help With Skeletal Muscle Injuries in Athletes Micronutrient Rationale for supplement Suggested dose Key research Vitamin D It is well established that many athletes are vitamin D deficient due to a lack of

Restricted access

Dirk Aerenhouts, Marcel Hebbelinck, Jacques R. Poortmans and Peter Clarys

Purpose and Methods:

To investigate dietary habits of Flemish adolescent track and field athletes using a 7-d weighed-food record. Besides adequacy for growth, development, and physical performance, dietary health aspects were considered.


Twenty-nine girls and 31 boys, with minimum 2 yr of track and field training practice, were recruited. All participants had daily breakfast (girls 22.5% ± 5.5% of total energy intake [TEI]; boys 19.8% ± 7.3%). Fruit in girls and juices and sports drinks in boys were consumed mostly between meals (girls 21.3% ± 8.1% of TEI; boys 24.3% ± 10.1%). Soft drinks contributed considerably to energy intake between meals in both sexes. Protein intake (1.5 ± 0.3 g · kg–1 · d−1 for both sexes) was within the recommended daily intake (RDI) for strength athletes. Mean daily carbohydrate intake in girls was lower than in boys (girls 5.1 ± 1.1 g/kg; boys 6.0 ± 0.9 g/kg), with mono- and disaccharides contributing 26% to TEI in both sexes. Total fat intake was above 30% of TEI in more than half the participants, and only 10 participants had a saturated-fat intake below 10% of TEI. Fiber intake (girls 23.7 ± 7.9 g; boys 29.1 ± 11.2 g) was far below the Belgian RDI. Intake of vitamins and minerals were generally low, despite micronutrient supplementation in 37.5% of the participants.


Few athletes reached all nutrient RDIs. Unhealthy food habits with regard to refined sugars, fat, and micronutrients were observed. These adolescent sprinters should be encouraged to consume more nonsweetened beverages, fruits, and vegetables.

Restricted access

Brandon M. Wellington, Michael D. Leveritt and Vincent G. Kelly


Repeat-high-intensity efforts (RHIEs) have recently been shown to occur at critical periods of rugby league matches.


To examine the effect that caffeine has on RHIE performance in rugby league players.


Using a double-blind, placebo-controlled, crossover design, 11 semiprofessional rugby league players (age 19.0 ± 0.5 y, body mass 87.4 ± 12.9 kg, height 178.9 ± 2.6 cm) completed 2 experimental trials that involved completing an RHIE test after either caffeine (300 mg caffeine) or placebo (vitamin H) ingestion. Each trial consisted of 3 sets of 20-m sprints interspersed with bouts of tackling. During the RHIE test, 20-m-sprint time, heart rate (HR), rating of perceived exertion (RPE), and blood lactate were measured.


Total time to complete the nine 20-m sprints during the caffeine condition was 1.0% faster (28.46 ± 1.4 s) than during the placebo condition (28.77 ± 1.7 s) (ES = 0.18, 90%CI –0.7 to 0.1 s). This resulted in a very likely chance of caffeine being of benefit to RHIE performance (99% likely to be beneficial). These improvements were more pronounced in the early stages of the test, with a 1.3%, 1.0%, and 0.9% improvement in sprint performance during sets 1, 2, and 3 respectively. There was no significant difference in RPE across the 3 sets (P = .47, 0.48, 1.00) or mean HR (P = .36), maximal HR (P = .74), or blood lactate (P = .50) between treatment conditions.


Preexercise ingestion of 300 mg caffeine produced practically meaningful improvements in RHIE performance in rugby league players.

Restricted access

Matthew S. Ganio, Jennifer F. Klau, Elaine C. Lee, Susan W. Yeargin, Brendon P. McDermott, Maxime Buyckx, Carl M. Maresh and Lawrence E. Armstrong

The purpose of this study was to compare the effects of a carbohydrate-electrolyte plus caffeine, carnitine, taurine, and B vitamins solution (CE+) and a carbohydrate-electrolyte-only solution (CE) vs. a placebo solution (PLA) on cycling performance and maximal voluntary contraction (MVC). In a randomized, double-blind, crossover, repeated-measures design, 14 male cyclists (M ± SD age 27 ± 6 yr, VO2max 60.4 ± 6.8 ml · kg−1 · min−1) cycled for 120 min submaximally (alternating 61% ± 5% and 75% ± 5% VO2max) and then completed a 15-min performance trial (PT). Participants ingested CE+, CE, or PLA before (6 ml/kg) and every 15 min during exercise (3 ml/kg). MVC was measured as a single-leg isometric extension (70° knee flexion) before (pre) and after (post) exercise. Rating of perceived exertion (RPE) was measured throughout. Total work accumulated (KJ) during PT was greater (p < .05) in CE+ (233 ± 34) than PLA (205 ± 52) but not in CE (225 ± 39) vs. PLA. MVC (N) declined (p < .001) from pre to post in PLA (988 ± 213 to 851 ± 191) and CE (970 ± 172 to 870 ± 163) but not in CE+ (953 ± 171 to 904 ± 208). At Minutes 60, 90, 105, and 120 RPE was lower in CE+ (14 ± 2, 14 ± 2, 12 ± 1, 15 ± 2) than in PLA (14 ± 2, 15 ± 2, 14 ± 2, 16 ± 2; p < .001). CE+ resulted in greater total work than PLA. CE+, but not PLA or CE, attenuated pre-to-post MVC declines. Performance increases during CE+ may have been influenced by lower RPE and greater preservation of leg strength during exercise in part as a result of the hypothesized effects of CE+ on the central nervous system and skeletal muscle.

Restricted access

Robyn S. Mehlenbeck, Kenneth D. Ward, Robert C. Klesges and Christopher M. Vukadinovich

Calcium intake in adolescent and young adult female athletes often is inadequate to optimize peak bone mass, an important determinant of osteoporosis risk. The purpose of this study was to determine if calcium supplementation in eumenorrheic female collegiate athletes increases intake to recommended levels and promotes increases in bone mineral density (BMD). Forty-eight eumenorrheic female athletes from several college teams (15 soccer, 7 crosscountry, 8 indoor track, and 18 basketball) were randomized at the beginning of a competitive season to receive either an oral calcium supplement (1000 mg calcium citrate/400 I.U. Vitamin D) or placebo daily throughout the training season (16 weeks). Self-reported daily pill intake was obtained every 2 weeks to assess adherence. Calcium intake was evaluated using the Rapid Assessment Method, and total body and leg BMD was measured at pre-, mid-, and postseason using dual energy x-ray absorptiometry (DEXA; Hologic QDR-2000). Pre-season calcium intake was lower than national recommendations for this age group (12), averaging 842 mg/d (SD = 719) and was lower in the placebo group compared to the supplemented group (649 ± 268 vs. 1071 ± 986 mg/d, respectively; p = .064). Adherence to supplementation was good, averaging 70% across the training season. Supplementation boosted total calcium intake to a mean of 1397 ± 411 mg/d, which is consistent with recommended levels for this group (37). Supplementation did not influence BMD change during this 16-week intervention. Across teams, a small increase of 0.8% was observed in leg BMD. Change in total body BMD was modified by team, with a significant increase of 1.5% observed in basketball players. These results indicate that providing calcium supplements of 1000 mg/d is adequate to boost total intake to recommended levels during athletic training. Longer intervention trials are required to determine whether calcium supplementation has a positive effect on BMD.

Restricted access

Manuela Konrad, David C. Nieman, Dru A. Henson, Krista M. Kennerly, Fuxia Jin and Sandra J. Wallner-Liebmann

This study tested the acute anti-inflammatory and immune-modulating influence of a quercetin-based supplement consumed by endurance athletes 15 min before an intense 2-hr run. In this randomized, crossover study, 20 runners (11 men, 9 women, age 38.4 ± 2.1 yr) completed two 2-hr treadmill runs at 70% VO2max (3 wk apart). Subjects ingested either 4 quercetin-based chews (Q-chew) or placebo chews (PL) 15 min before the runs. The 4 Q-chews provided 1,000 mg quercetin, 120 mg epigallocatechin 3-gallate, 400 mg isoquercetin, 400 mg each eicosapentaenoic acid and docosahexaenoic acid, 1,000 mg vitamin C, and 40 mg niacinamide. Subjects provided blood samples 30 min before, immediately after, and 1 hr postexercise and were analyzed for plasma quercetin, total blood leukocytes (WBC), C-reactive protein (CRP), 9 cytokines (IL-6, TNFα, GM-CSF, IFNγ, IL-1β, IL-2, IL-8, IL-10, and IL-12p70), granulocyte (GR) and monocyte (MO) phagocytosis (PHAG), and oxidative-burst activity (OBA). Plasma quercetin increased from 80.0 ± 26.0 μg/L to 6,337 ± 414 μg/L immediately postexercise and 4,324 ± 310 μg/L 1 hr postexercise after ingestion of Q-chews, compared with no change in PL (p < .001). Exercise caused significant increases in, CRP, GM-CSF, IL-10, IL-1β, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG and decreases in GR-OBA and MO-OBA, but no differences in the pattern of change were measured between Q-chew and PL trials. Acute ingestion of Q-chews 15 min before heavy exertion caused a strong increase in plasma quercetin levels but did not counter postexercise inflammation or immune changes relative to placebo.

Restricted access

Lindsay A. Ellis, Brandon A. Yates, Amy L. McKenzie, Colleen X. Muñoz, Douglas J. Casa and Lawrence E. Armstrong

Urine color (Ucol) as a hydration assessment tool provides practicality, ease of use, and correlates moderately to strongly with urine specific gravity (Usg) and urine osmolality (Uosm). Indicative of daily fluid turnover, along with solute and urochrome excretion in 24-hr samples, Ucol may also reflect dietary composition. Thus, the purpose of this investigation was to determine the efficacy of Ucol as a hydration status biomarker after nutritional supplementation with beetroot (880 mg), vitamin C (1000 mg), and riboflavin (200 mg). Twenty males (Mean ± SD; age, 21 ± 2 y; body mass, 82.12 ± 15.58 kg; height, 1.77 ± 0.06 m) consumed a standardized breakfast and collected all urine voids on one control day (CON) and 1 day after consuming a standardized breakfast and a randomized and double-blinded supplement (SUP) over 3 weeks. Participants replicated exercise and diet for one day before CON, and throughout CON and SUP. Ucol, Usg, Uosm, and urine volume were measured in all 24-hr samples, and Ucol and Usg were measured in all single samples. Ucol was a significant predictor of single sample Usg after all supplements (p < .05). Interestingly, 24-hr Ucol was not a significant predictor of 24-h Usg and Uosm after riboflavin supplementation (p = .20, p = .21). Further, there was a significant difference between CON and SUP 24-h Ucol only after riboflavin supplementation (p < .05). In conclusion, this investigation suggests that users of the UCC (urine color chart) should consider riboflavin supplementation when classifying hydration status and use a combination of urinary biomarkers (e.g., Usg and Ucol), both acutely and over 24 hr.

Restricted access

Maroje Soric, Marjeta Misigoj-Durakovic and Zeljko Pedisic

The purpose of this study was to assess dietary intake and body composition of prepubescent girls competing in 3 aesthetic sports (artistic and rhythmic gymnastics and ballet). Because physiological demands of ballet training are similar to those in other aesthetic sports, ballet dancers were, for the purpose of this study, regarded as athletes. The sample consisted of 39 athletes (median age, 11 years, range 9–13) and 15 controls (median age, 11 years, range 10–12). Dietary intake was assessed using a quantitative food frequency questionnaire, and body composition, by means of anthropometry. There was no significant difference in total energy intake between groups, but there was a significant difference in energy substrate distribution. Artistic gymnasts reported significantly higher carbohydrate and lower fat contribution to total energy (57% ± 6% and 29% ± 5%, respectively) than rhythmic gymnasts (48% ± 6% and 36% ± 5%), ballet dancers (51% ± 4% and 34% ± 3%), or controls (51% ± 5% and 34% ± 4%). Relative to body weight, artistic gymnasts reported higher intake of carbohydrates (9.1 ± 4.2 g/kg) than rhythmic gymnasts (5.6 ± 3.1 g/kg), ballet dancers (6.6 ± 2.5 g/kg), or controls (5.4 ± 1.9 g/kg). Artistic gymnasts also had the lowest body-fat percentage among the groups. In all the groups mean reported daily intakes of most nutrients were higher than the current daily recommended intakes. The exceptions were dietary fiber and calcium. The proportion of athletes with an inadequate reported intake was highest for phosphorus (33%), followed by vitamin A and niacin (18%) and zinc (13%).

Restricted access

Heather L. Colleran, Andrea Hiatt, Laurie Wideman and Cheryl A. Lovelady

was made after baseline measurements were completed. All participants were given a year’s supply of a multivitamin supplement containing 10 μg of vitamin D. Laboratory Measurements BMD and Anthropometrics Bone density was measured using a different dual-energy X-ray absorptiometry machine for each