Search Results

You are looking at 161 - 170 of 912 items for :

  • "body composition" x
Clear All
Restricted access

Johann C. Bilsborough, Kate Greenway, Steuart Livingston, Justin Cordy and Aaron J. Coutts

The purpose of this study was to examine the seasonal changes in body composition, nutrition, and upper-body (UB) strength in professional Australian Football (AF) players. The prospective longitudinal study examined changes in anthropometry (body mass, fat-free soft-tissue mass [FFSTM], and fat mass) via dual-energy X-ray absorptiometry 5 times during an AF season (start preseason, midpreseason, start season, midseason, end season) in 45 professional AF players. Dietary intakes and strength (bench press and bench pull) were also assessed at these time points. Players were categorized as experienced (>4 y experience, n = 23) or inexperienced (<4 y experience, n = 22). Fat mass decreased during the preseason but was stable through the in-season for both groups. %FFSTM was increased during the preseason and remained constant thereafter. UB strength increased during the preseason and was maintained during the in-season. Changes in UB FFSTM were related to changes in UB-strength performance (r = .37−.40). Total energy and carbohydrate intakes were similar between the experienced and inexperienced players during the season, but there was a greater ratio of dietary fat intake at the start-preseason point and an increased alcohol, reduced protein, and increased total energy intake at the end of the season. The inexperienced players consumed more fat at the start of season and less total protein during the season than the experienced players. Coaches should also be aware that it can take >1 y to develop the appropriate levels of FFSTM in young players and take a long-term view when developing the physical and performance abilities of inexperienced players.

Restricted access

Andrew Pardue, Eric T. Trexler and Lisa K. Sprod

Extreme body composition demands of competitive bodybuilding have been associated with unfavorable physiological changes, including alterations in metabolic rate and endocrine profile. The current case study evaluated the effects of contest preparation (8 months), followed by recovery (5 months), on a competitive drug-free male bodybuilder over 13 months (M1-M13). Serum testosterone, triiodothyronine (T3), thyroxine (T4), cortisol, leptin, and ghrelin were measured throughout the study. Body composition (BodPod, dualenergy x-ray absorptiometry [DXA]), anaerobic power (Wingate test), and resting metabolic rate (RMR) were assessed monthly. Sleep was assessed monthly via the Pittsburgh Sleep Quality Index (PSQI) and actigraphy. From M1 to M8, testosterone (623–173 ng∙dL-1), T3 (123–40 ng∙dL-1), and T4 (5.8–4.1 mg∙dL-1) decreased, while cortisol (25.2–26.5 mg∙dL-1) and ghrelin (383–822 pg∙mL-1) increased. The participant lost 9.1 kg before competition as typical energy intake dropped from 3,860 to 1,724 kcal∙day-1; BodPod estimates of body fat percentage were 13.4% at M1, 9.6% at M8, and 14.9% at M13; DXA estimates were 13.8%, 5.1%, and 13.8%, respectively. Peak anaerobic power (753.0 to 536.5 Watts) and RMR (107.2% of predicted to 81.2% of predicted) also decreased throughout preparation. Subjective sleep quality decreased from M1 to M8, but objective measures indicated minimal change. By M13, physiological changes were largely, but not entirely, reversed. Contest preparation may yield transient, unfavorable changes in endocrine profile, power output, RMR, and subjective sleep outcomes. Research with larger samples must identify strategies that minimize unfavorable adaptations and facilitate recovery following competition.

Restricted access

Alisa Nana, Gary J. Slater, Will G. Hopkins, Shona L. Halson, David T. Martin, Nicholas P. West and Louise M. Burke

Purpose:

The implications of undertaking DXA scans using best practice protocols (subjects fasted and rested) or a less precise but more practical protocol in assessing chronic changes in body composition following training and a specialized recovery technique were investigated.

Methods:

Twenty-one male cyclists completed an overload training program, in which they were randomized to four sessions per week of either cold water immersion therapy or control groups. Whole-body DXA scans were undertaken with best practice protocol (Best) or random activity protocol (Random) at baseline, after 3 weeks of overload training, and after a 2-week taper. Magnitudes of changes in total, lean and fat mass from baseline-overload, overload-taper and baseline-taper were assessed by standardization (Δmean/SD).

Results:

The standard deviations of change scores for total and fat-free soft tissue mass (FFST) from Random scans (2–3%) were approximately double those observed in the Best (1–2%), owing to extra random errors associated with Random scans at baseline. There was little difference in change scores for fat mass. The effect of cold water immersion therapy on baseline-taper changes in FFST was possibly harmful (-0.7%; 90% confidence limits ±1.2%) with Best scans but unclear with Random scans (0.9%; ±2.0%). Both protocols gave similar possibly harmful effects of cold water immersion therapy on changes in fat mass (6.9%; ±13.5% and 5.5%; ±14.3%, respectively).

Conclusions:

An interesting effect of cold water immersion therapy on training-induced changes in body composition might have been missed with a less precise scanning protocol. DXA scans should be undertaken with Best.

Restricted access

Regina M. Lewis, Maja Redzic and D. Travis Thomas

The purpose of this 6-month randomized, placebo-controlled trial was to determine the effect of season-long (September–March) vitamin D supplementation on changes in vitamin D status, which is measured as 25(OH) D, body composition, inflammation, and frequency of illness and injury. Forty-five male and female athletes were randomized to 4,000 IU vitamin D (n = 23) or placebo (n = 22). Bone turnover markers (NTx and BSAP), 25(OH)D, and inflammatory cytokines (TNF-alpha, IL-6, and IL1-β) were measured at baseline, midpoint, and endpoint. Body composition was assessed by DXA and injury and illness data were collected. All athletes had sufficient 25(OH)D (> 32 ng/ml) at baseline (mean: 57 ng/ml). At midpoint and endpoint, 13% and 16% of the total sample had 25(OH)D < 32 ng/ml, respectively. 25(OH)D was not positively correlated with bone mineral density (BMD) in the total body, proximal dual femur, or lumbar spine. In men, total body (p = .04) and trunk (p = .04) mineral-free lean mass (MFL) were positively correlated with 25(OH)D. In women, right femoral neck BMD (p = .02) was positively correlated with 25(OH)D. 25(OH)D did not correlate with changes in bone turnover markers or inflammatory cytokines. Illness (n = 1) and injury (n = 13) were not related to 25(OH)D; however, 77% of injuries coincided with decreases in 25(OH)D. Our data suggests that 4,000 IU vitamin D supplementation is an inexpensive intervention that effectively increased 25(OH)D, which was positively correlated to bone measures in the proximal dual femur and MFL. Future studies with larger sample sizes and improved supplement compliance are needed to expand our understanding of the effects of vitamin D supplementation in athletes.

Restricted access

Mandy Clark, Debra B. Reed, Stephen F. Crouse and Robert B. Armstrong

Little published data describe the dietary and physiological profiles of intercollegiate female soccer players; therefore, the purpose of this investigation was to report baseline dietary data, anthropometrics, and performance indices of soccer women during rigorous pre-season training (2 sessions/day) and then during the post-competitive season. Members of a NCAA Division I women’s soccer squad completed 3-day diet records, anthropometrics, and physical tests, including VO2peak. Average body mass was 62 kg with 16% body fat, and no significant pre to post differences were observed. Total energy, carbohydrate (CHO), protein, and fat intakes were significantly greater during the pre-sea-son. Pre-season energy intake met the DRI for females with an “active” lifestyle (37 kcal/kg). While CHO intake failed to meet minimum recommendations to promote glycogen repletion (7–10 g/kg), protein and fat intakes were above minimum recommendations. Pre- and post-season intakes of several micronu-trients were marginal (<75% of the DRI) including vitamin E, folate, copper, and magnesium. VO2peak significantly improved from pre- to post-season (42 and 50 ml/kg/min). In this study female soccer players appeared to meet caloric needs during periods of training but failed to meet minimum CHO and micronu-trient recommendations. Foods higher in protein and fat displaced more CHOrich and nutrient-dense foods within athletes’ energy requirements and satiety limits.

Restricted access

Liam P. Kilduff, Yannis P. Pitsiladis, Louise Tasker, Jeff Attwood, Paul Hyslop, Andrew Dailly, Ian Dickson and Stan Grant

This study examined the effects of Cr supplementation on muscle strength in conjunction with resistance training in nonresistance-trained males utilizing strategies previously reported in the literature to help optimize muscle Cr uptake. Nineteen nonresistance-trained males underwent 4 weeks of resistance training (3 days · week−1) while assigned to Cr (20 g · d−1 Cr + 140 g · d−1 glucose) for 7 days (loading), followed by 5 g · d−1 Cr + 35 g · d−1 glucose for 21 days (maintenance; n = 9) or placebo (160 g · d−1 glucose [loading] followed by 40 g · d−1 [maintenance; n = 10]). In subjects classified as “responders” to Cr on the basis of body mass changes (n = 7), the magnitude of change in 180∞ · s−1 isokinetic (p = .029) and isometric (p = .036) force was greater compared to the placebo group. A positive correlation was found between changes in body mass and 180º · s−1 isokinetic (loading: r = 0.68, p = .04; maintenance: r = 0.70, p = .037) and isometric (loading: r = 0.82, p < .01) force. Estimated Cr uptake was also positively correlated with changes in 60º · s−1 (r = 0.90, p < .01) and 180º · s−1 (r = 0.68, p = .043) isokinetic force, and isometric force (r = 0.71, p = .033). These results indicate that Cr supplementation can increase muscle strength (allied with 4 weeks of strength training) but only in subjects whose estimated Cr uptake and body mass are significantly increased; the greater the Cr uptake and associated body mass changes, the greater the performance gains.

Restricted access

Mary K. Martin, David T. Martin, Gregory R. Collier and Louise M. Burke

We estimated self-reported energy intake (EI) and cycling energy expenditure (CEE) during racing and training over 26 days (9 days recovery [REC], 9 days training [TRN], and 8 days racing [RACE], which included a 5-day stage race) for 8 members of the Australian National Training Squad [mean ± SD; 25.1 ± 4.0 years, 59.2 ± 4.4 kg, 3.74 ± 0.24 L · min−1 V̇O2peak, 13.6 ± 4.5 % Body fat (%Bfat)]. After 70 days of training and racing, average body mass increased by 1.1 kg (95%CI 0.5 to 1.7 kg; p < .01) and average %Bfat decreased by 0.9% (95%CI –1.7 to –0.1%; p < .05). These minor changes, however, were not considered clinically significant. CEE was different between RACE, TRN, and REC (2.15 ± 0.18 vs. 1.73 ± 0.25 vs. 0.72 ± 0.15 MJ · d−1, p < .05). Reported EI for RACE and TRN were higher than REC (14.87 ± 3.03, 13.70 ± 4.04 vs.11.98 ± 3.57 MJ · d−1, p < .05). Reported intake of carbohydrate for RACE and TRN were also higher than REC (588 ± 122, 536 ± 130 vs. 448 ± 138 g · d−1, p < .05). Reported intake of fat (59 ± 21–68 ± 21 g · d−1) was similar during RACE, TRN, and REC, whereas protein intake tended to be higher during TRN (158 ± 49 g · d−1) compared to RACE and REC (136 ± 33; 130 ± 33 g · d−1). There was a relationship between average CEE and average EI over the 26 days (r = 0.77, p < .05), but correlations between CEE and EI for each of the women varied (r =–0.02 to 0.67). There was a strong trend for an inverse relationship between average EI and %Bfat (r = –.68, p = .06, n = 8). In this study, increases in reported EI during heavy training and racing were the result of an increase in carbohydrate intake. Most but not all cyclists modulated EI based on CEE. Research is required to determine whether physiological or psychological factors are primarily responsible for the observed relationship between CEE and EI and also the inverse correlation between %Bfat and EI.

Restricted access

Zhen-Bo Cao, Nobuyuki Miyatake, Tomoko Aoyama, Mitsuru Higuchi and Izumi Tabata

Background:

The purpose was to develop new maximal oxygen uptake (VO2max) prediction models using a perceptually regulated 3-minute walk test.

Methods:

VO2max was measured with a maximal incremental cycle test in 283 Japanese adults. A 3-minute walk test was conducted at a self-regulated intensity corresponding to ratings of perceived exertion (RPE) 13.

Results:

A 3-minute walk distance (3MWD) was significantly related to VO2max (r = .60, P < .001). Three prediction models were developed by multiple regression to estimate VO2max using data on gender, age, 3MWD, and either BMI [BMI model, multiple correlation coefficients (R) = .78, standard error of estimate (SEE) = 5.26 ml⋅kg-1⋅min-1], waist circumference (WC model, R = .80, SEE = 5.04 ml⋅kg-1⋅min-1), or body fat percentage (%Fat model, R = .84, SEE = 4.57 ml⋅kg-1⋅min-1), suggesting that the %Fat model is the best model [VO2max = 37.501 + 0.463 × Gender (0 = women, 1 = men) – 0.195 × Age – 0.589 × %Fat + 0.053 × 3MWD]. Cross-validation by using the predicted residual sum of squares (PRESS) procedures demonstrated a high level of cross-validity of all prediction models.

Conclusions:

The new VO2max prediction models are reasonably applicable to estimating VO2max in Japanese adults and represent a quick, low-risk, and convenient means for estimating VO2max in the field.

Restricted access

Jesper Nørregaard, Martin Gram, Andreas Vigelsø, Caroline Wiuff, Anja Birk Kuhlman, Jørn Wulff Helge and Flemming Dela

We studied the effect of physical inactivity and subsequent retraining on cardiovascular risk factors in 17 young (Y; 23.4 ± 0.5 years) and 15 older adult (O; 68.1 ± 1.1 years) men who underwent 14 days of one leg immobilization followed by six weeks of training. Body weight remained unchanged. Daily physical activity decreased by 31 ± 9% (Y) and 37 ± 9% (O) (p < .001). Maximal oxygen uptake decreased with inactivity (Y) and always increased with training. Visceral fat mass decreased (p < .05) with training. Concentrations of lipids in blood were always highest in the older adults. FFA and glycerol increased with reduced activity (p < .05), but reverted with training. Training resulted in increases in HDL-C (p < .05) and a decrease in LDL-C and TC:HDL-C ratio (p < .05). A minor reduction in daily physical activity for two weeks increased blood lipids in both young and older men. Six weeks of training improved blood lipids along with loss of visceral fat.