Search Results

You are looking at 181 - 190 of 2,136 items for :

Clear All
Restricted access

Abd-Elbasset Abaïdia, Julien Lamblin, Barthélémy Delecroix, Cédric Leduc, Alan McCall, Mathieu Nédélec, Brian Dawson, Georges Baquet and Grégory Dupont

Purpose:

To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.

Methods:

Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.

Results:

Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.

Conclusions:

CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.

Restricted access

Daniel Hammes, Sabrina Skorski, Sascha Schwindling, Alexander Ferrauti, Mark Pfeiffer, Michael Kellmann and Tim Meyer

The Lamberts and Lambert Submaximal Cycle Test (LSCT) is a novel test designed to monitor performance and fatigue/recovery in cyclists. Studies have shown the ability to predict performance; however, there is a lack of studies concerning monitoring of fatigue/recovery. In this study, 23 trained male cyclists (age 29 ± 8 y, VO2max 59.4 ± 7.4 mL · min−1 · kg−1) completed a training camp. The LSCT was conducted on days 1, 8, and 11. After day 1, an intensive 6-day training period was performed. Between days 8 and 11, a recovery period was realized. The LSCT consists of 3 stages with fixed heart rates of 6 min at 60% and 80% and 3 min at 90% of maximum heart rate. During the stages, power output and rating of perceived exertion (RPE) were determined. Heart-rate recovery was measured after stage 3. Power output almost certainly (standardized mean difference: 1.0) and RPE very likely (1.7) increased from day 1 to day 8 at stage 2. Power output likely (0.4) and RPE almost certainly (2.6) increased at stage 3. From day 8 to day 11, power output possibly (–0.4) and RPE likely (–1.5) decreased at stage 2 and possibly (–0.1) and almost certainly (–1.9) at stage 3. Heart-rate recovery was likely (0.7) accelerated from day 1 to day 8. Changes from day 8 to day 11 were unclear (–0.1). The LSCT can be used for monitoring fatigue and recovery, since parameters were responsive to a fatiguing training and a following recovery period. However, consideration of multiple LSCT variables is required to interpret the results correctly.

Restricted access

Andrew J. McAinch, Mark A. Febbraio, Joann M. Parkin, Shuang Zhao, Kathy Tangalakis, Lilian Stojanovska and Michael F. Carey

This study tested the hypothesis that active recovery between bouts of intense aerobic exercise would lead to better maintenance of exercise performance in the second bout of exercise. Seven trained men on 2 separate occasions (VO2peak = 58.3 ± 9.4 ml · kg–1 · min–1) performed as much work as possible during two 20-min cycling exercise bouts, separated by a 15-min recovery period. During passive recovery (PR), subjects rested supine, while during active recovery (AR) subjects continued to cycle at 40% VO2peak. Muscle biopsies and blood samples were obtained. Neither muscle glycogen or lactate was different when comparing AR with PR at any point. In contrast, plasma lactate concentration was higher (p < .05) in PR versus AR during the recovery period, such that subjects commenced the second bout of intense exercise with a lower (p < .05) plasma lactate concentration in AR (4.4 ± 0.7 vs. 7.7 ± 1.4 mmol · L–1 following AR and PR, respectively). Work performed in Bout 2 was less than that performed in Bout 1 in both trials (p < .01), with no difference in work performed between trials. These data do not support the benefit of AR when compared to PR in the maintenance of subsequent intense aerobic exercise performance.

Restricted access

Jessica Hill, Glyn Howatson, Ken van Someren, David Gaze, Hayley Legg, Jack Lineham and Charles Pedlar

Compression garments are frequently used to facilitate recovery from strenuous exercise.

Purpose:

To identify the effects of 2 different grades of compression garment on recovery indices after strenuous exercise.

Methods:

Forty-five recreationally active participants (n = 26 male and n = 19 female) completed an eccentric-exercise protocol consisting of 100 drop jumps, after which they were matched for body mass and randomly but equally assigned to a high-compression pressure (HI) group, a low-compression pressure (LOW) group, or a sham ultrasound group (SHAM). Participants in the HI and LOW groups wore the garments for 72 h postexercise; participants in the SHAM group received a single treatment of 10-min sham ultrasound. Measures of perceived muscle soreness, maximal voluntary contraction (MVC), countermovement-jump height (CMJ), creatine kinase (CK), C-reactive protein (CRP), and myoglobin (Mb) were assessed before the exercise protocol and again at 1, 24, 48, and 72 h postexercise. Data were analyzed using a repeated-measures ANOVA.

Results:

Recovery of MVC and CMJ was significantly improved with the HI compression garment (P < .05). A significant time-by-treatment interaction was also observed for jump height at 24 h postexercise (P < .05). No significant differences were observed for parameters of soreness and plasma CK, CRP, and Mb.

Conclusions:

The pressures exerted by a compression garment affect recovery after exercise-induced muscle damage, with higher pressure improving recovery of muscle function.

Restricted access

Jessica M. Stephens, Shona Halson, Joanna Miller, Gary J. Slater and Christopher D. Askew

The use of cold-water immersion (CWI) for postexercise recovery has become increasingly prevalent in recent years, but there is a dearth of strong scientific evidence to support the optimization of protocols for performance benefits. While the increase in practice and popularity of CWI has led to multiple studies and reviews in the area of water immersion, the research has predominantly focused on performance outcomes associated with postexercise CWI. Studies to date have generally shown positive results with enhanced recovery of performance. However, there are a small number of studies that have shown CWI to have either no effect or a detrimental effect on the recovery of performance. The rationale for such contradictory responses has received little attention but may be related to nuances associated with individuals that may need to be accounted for in optimizing prescription of protocols. To recommend optimal protocols to enhance athletic recovery, research must provide a greater understanding of the physiology underpinning performance change and the factors that may contribute to the varied responses currently observed. This review focuses specifically on why some of the current literature may show variability and disparity in the effectiveness of CWI for recovery of athletic performance by examining the body temperature and cardiovascular responses underpinning CWI and how they are related to performance benefits. This review also examines how individual characteristics (such as physique traits), differences in water-immersion protocol (depth, duration, temperature), and exercise type (endurance vs maximal) interact with these mechanisms.

Restricted access

Ida A. Heikura, Louise M. Burke, Antti A. Mero, Arja Leena Tuulia Uusitalo and Trent Stellingwerff

We investigated one week of dietary microperiodization in elite female (n = 23) and male (n = 15) runners and race-walkers by examining the frequency of training sessions and recovery periods conducted with recommended carbohydrate (CHO) and protein availability. Food and training diaries were recorded in relation to HARD (intense or >90min sessions; KEY) versus RECOVERY days (other-than KEY sessions; EASY). The targets for amount and timing of CHO and protein around KEY sessions were based on current nutrition recommendations. Relative daily energy and CHO intake was significantly (p < .05) higher in males (224 ± 26 kJ/kg/d, 7.3 ± 1.4 g/kg/d CHO) than females (204 ± 29 kJ/kg/d, 6.2 ± 1.1 g/kg/d CHO) on HARD days. However, when adjusted for training volume (km), there was no sex-based difference in CHO intake daily (HARD: 0.42 ± 0.14 vs 0.39 ± 0.15 g/kg/km). Females appeared to periodize energy and protein intake with greater intakes on HARD training days (204 ± 29 vs 187 ± 35 kJ/kg/d, p = .004; 2.0 ± 0.3 vs 1.9 ± 0.3 g/kg/d protein, p = .013), while males did not periodize intakes. Females showed a pattern of periodization of postexercise CHO for KEY vs EASY (0.9 ± 0.4 vs 0.5 ± 0.3 g/kg; p < .05) while males had higher intakes but only modest periodization (1.3 ± 0.9 vs 1.0 ± 0.4; p = .32). There was only modest evidence from female athletes of systematic microperiodization of eating patterns to meet contemporary sports nutrition guidelines. While this pattern of periodization was absent in males, in general they consumed more energy and CHO daily and around training sessions compared with females. Elite endurance athletes do not seem to systematically follow the most recent sports nutrition guidelines of periodized nutrition.

Restricted access

Sharon L. Miller, P. Courtney Gaine, Carl M. Maresh, Lawrence E. Armstrong, Cara B. Ebbeling, Linda S. Lamont and Nancy R. Rodriguez

This study determined the effect of nutritional supplementation throughout endurance exercise on whole-body leucine kinetics (leucine rate of appearance [Ra], oxidation [Ox], and nonoxidative leucine disposal [NOLD]) during recovery. Five trained men underwent a 2-h run at 65% VO2max, during which a carbohydrate (CHO), mixed protein-carbohydrate (milk), or placebo (PLA) drink was consumed. Leucine kinetics were assessed during recovery using a primed, continuous infusion of 1-13C leucine. Leucine Ra and NOLD were lower for milk than for PLA. Ox was higher after milk-supplemented exercise than after CHO or PLA. Although consuming milk during the run affected whole-body leucine kinetics, the benefits of such a practice for athletes remain unclear. Additional studies are needed to determine whether protein supplementation during exercise can optimize protein utilization during recovery.

Restricted access

Helena Gapeyeva, Mati Pääsuke, Jaan Ereline, Vallo Vaher, Aivar Pintsaar and Aalo Eller

Context:

Contractile characteristics of the knee extensors after arthroscopic meniscectomy are poorly understood.

Objective:

To measure the recovery of knee-extensor-muscle contractility after arthroscopic partial meniscectomy.

Design:

Single-group repeated measures.

Setting:

Kinesiology and biomechanics laboratory.

Subjects:

Fourteen patients with arthroscopic partial medial meniscectomies.

Main Outcome Measures:

Maximal isometric voluntary contraction (MVC) force, rate of force development (MRFDES), and half-relaxation time (HRTES) of evoked tetanic contraction preoperatively and during 6 months postoperatively.

Results:

Two weeks postoperatively, a reduction in MVC force of 27.1% and in MRFDES of 17.8% and a prolongation of HRTES of 34.0% in the injured leg were found. A significant MVC-force deficit (17.5%) was observed 3 months postoperatively.

Conclusions:

The recovery of knee-extensor-muscle voluntary strength is more delayed than are evoked tetanic-contractile characteristics after partial meniscectomy. The rehabilitation protocol seems to be insufficient to attain effective recovery of knee-extensor-muscle voluntary strength.

Restricted access

Jarek Mäestu, Jaak Jürimäe, Kairi Kreegipuu and Toivo Jürimäe

The aims were to assess (a) the usefulness of RESTQ-Sport in the process of training monitoring and (b) whether a change in psychological parameters is reflected by similar changes in specific biochemical parameters. The high volume training period, in general, caused increases in stress scales and decreases in recovery scales of the RESTQ-Sport, while during recovery period, stress levels declined. Cortisol was not changed during the study period, but significant increases in creatine kinase activity were found during the high training period compared to reference period. The results of the present study demonstrate that changes in training volume were reflected by changes in the RESTQ-Sport scales. A close relationship was found between cortisol and creatine kinase activity and subjective ratings of stress and recovery.

Restricted access

Peter Olusoga and Göran Kenttä

This study investigated how the experiences of two elite coaches contributed to and shaped their stories of burnout and withdrawal from high performance coaching. The coaches whose narratives we explore were both middle-aged head coaches, one in a major team sport at the highest club level, and one in an individual Olympic sport at international level. Through a thematic narrative analysis, based on in-depth interviews, the stories of the two coaches are presented in four distinct sections: antecedents, experiences of coaching with burnout symptoms, withdrawal from sport, and the process of recovery and personal growth. These narratives have implications for high performance coaching, such as the importance of role clarity, work-home inference, counseling, mentoring, and social support as means to facilitate recovery, and the need for additional research with coaches who have left sport, to gain a more comprehensive understanding of the complete burnout-recovery process.