Search Results

You are looking at 11 - 20 of 492 items for :

Clear All
Restricted access

Erik A. Richter, Jørgen F.P. Wojtaszewski, Søren Kristiansen, Jens R. Daugaard, Jakob N. Nielsen, Wim Derave and Bente Kiens

In the present short review some factors affecting glucose utilization during exercise in skeletal muscle will be briefly described. Special focus will be put on the glucose transport step across the sarcolemma. Glucose transporters (GLUT4) are expressed at a surprisingly similar level in the different muscle fiber types in human skeletal muscle in contrast to findings in the rat. When working at the same absolute work load muscle glucose transport is decreased in trained compared with untrained muscle in part due to a decrease in GLUT4 translocation to the sarcolemma in trained muscle. However, when trained and untrained muscle are stressed severely by a workload taxing 100% of their peak oxygen uptake in a glycogen-depleted state, then glucose uptake is larger in trained than in untrained muscle and correlates with muscle GLUT4 content. Finally, the possible role of the AMP-activated protein kinase (AMPK) in regulating glucose uptake during exercise is discussed. It is indicated that at present no experiments definitively link activation of AMPK to activation of muscle glucose transport during exercise.

Restricted access

Andrew R. Coggan, Robert J. Spina, Wendy M. Kohrt, Dennis M. Bier and John O. Holloszy

We hypothesized that when plasma glucose availability is maintained by carbohydrate (CHO) ingestion, trained cyclists can utilize plasma glucose at very high rates during the later stages of prolonged exercise (10). To test this hypothesis, a well-trained male cyclist was studied during exercise to fatigue at 70% VO2max when ingesting glucose throughout exercise. A primed continuous infusion of [U-13C]glucose was begun after 60 min of exercise to measure rates of plasma glucose appearance (Ra), disappearance (Rd), and oxidation (Rox). Ra and Rd rose progressively throughout exercise, peaking at 6.85 and 6.99 mmollmin, respectively, at fatigue (i.e., 133 min). Most (93%) of this glucose was oxidized; during the final 30 min of exercise, Rox, averaged 6.10 mmollmin and accounted for approximately half of total CHO oxidation. These results support the hypothesis that trained cyclists can oxidize plasma glucose at very high rates during the later stages of prolonged exercise when fed CHO.

Restricted access

Edwin Chong, Kym J. Guelfi and Paul A. Fournier

This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract.

Restricted access

Alan J. McCubbin, Anyi Zhu, Stephanie K. Gaskell and Ricardo J.S. Costa

guidelines during prolonged endurance exercise (>2.5 hr) suggest that up to 90 g/hr be consumed by combining glucose and/or its polymers with fructose ( Thomas et al., 2016 ). This approach is recommended to maximize exogenous carbohydrate provision, while aiming to minimize exercise

Restricted access

Darren Triplett, J. Andrew Doyle, Jeffrey C. Rupp and Dan Benardot

A number of recent research studies have demonstrated that providing glucose and fructose together in a beverage consumed during exercise results in significantly higher oxidation rates of exogenous carbohydrate (CHO) than consuming glucose alone. However, there is insufficient evidence to determine whether the increased exogenous CHO oxidation improves endurance performance. The purpose of this study was to determine whether consuming a beverage containing glucose and fructose (GF) would result in improved cycling performance compared with an isocaloric glucose-only beverage (G). Nine male competitive cyclists (32.6 ± 5.8 years, peak oxygen uptake 61.5 ± 7.9 ml · kg-1 · min-1) completed a familiarization trial and then 2 simulated 100-km cycling time trials on an electronically braked Lode cycle ergometer separated by 5–7 d. During the randomly ordered experimental trials, participants received 36 g of CHO of either G or GF in 250 ml of water every 15 min. All 9 participants completed the 100-km time trial significantly faster when they received the GF beverage than with G (204.0 ± 23.7 vs. 220.6 ± 36.6 min; p = .023). There was no difference at any time point between trials for blood glucose or for blood lactate. Total CHO oxidation increased significantly from rest during exercise but was not statistically significant between the GF and G trials, although there was a trend for CHO oxidation to be higher with GF in the latter stages of the time trial. Consumption of a CHO beverage containing glucose and fructose results in improved 100-km cycling performance compared with an isocaloric glucose-only beverage.

Restricted access

James A. Lang, Carl V. Gisolfi and G. Patrick Lambert

The purpose of this study was to determine the effects of exercise intensity on active and passive intestinal glucose absorption. Eight trained runners (age = 23 ± 2 y; VO2max = 62.1 ± 5.8 mL · kg−1 · min−1) performed a 1 h resting experiment and three 1 h treadmill experiments at 30, 50, or 70% VO2max in a thermoneutral environment. Immediately prior to each experiment, euhydrated subjects ingested a solution containing two non-metabolizable glucose analogs, 3-O-methyl-D-glucose (3MG; actively absorbed; 5 g) and D-xylose (passively absorbed; 5 g). During the following 5 h, all urine was collected and the amount of 3MG and D-xylose in the urine was determined. Using repeated measures ANOVA, a significant (P < 0.05) reduction in urinary excretion of each carbohydrate was observed at 70% VO2max compared to the other intensities suggesting that both active and passive intestinal absorption of glucose may be reduced during prolonged running at this intensity.

Restricted access

Marie Dunford and Charlotte Saunders

The determination of blood glucose response to various carbohydrate foods may help athletes in their choice of preexercise feedings. This case study documented the postprandial glycemic responses of three male endurance athletes at rest after ingestion of 50-gram portions of three carbohydrate foods: graham crackers, orange juice, and oatmeal. Plasma glucose response differed in each subject for each test food. Two of the three subjects exhibited similar glycemic responses, but not to the same test food. Future studies will clarify the relationship between carbohydrate ingestion and postprandial glucose response.

Restricted access

Mark A. Tarnopolsky, Kerry Dyson, Stephanie A. Atkinson, Duncan MacDougall and Cynthia Cupido

We studied the effects of different CHO supplements on exercise metabolism (1 hr at 75% V˙O2) and performance (fatigue time at 85% V˙O2) in 8 male endurance athletes (VO2max=68.8±3.8 mlkg1min1) Four treatments were administered in a randomized, double-blind fashion: Trial A = 3-day pretest, postexercise supplementation (177 kcal [81% carbohydrate, 19% protein] consumed < 10 min after exercise) + 600 ml 8% glucose polymers/ fructose 1 hr pretesting + 600 ml 8% glucose polymers/glucose during testing; Trial B = placebo during 3-day pretest + remainder same as Trial A; Trial C = placebo at all time points; and Trial D = same as Trial B with 8% glucose 1 hr before the test as well as during the test. Time to fatigue at 85% V˙O2max (Í24%) and total CHO oxidation were greater for A versus C (p < .05). Plasma glucose concentration was higher for A and B versus C, while increases in plasma potassium concentration were attenuated for A versus C (both p < .05). None of the supplements had differential effects upon hematocrit, plasma sodium [Na+] and lactate, V˙O2, or rating of perceived exertion during exercise. Three-day preexercise protein + carbohydrate supplements followed by 1-hr pre- and during-exercise mixed carbohydrate supplements increased time to fatigue and carbohydrate oxidation and attenuated rises in plasma [K+] com pared to placebo.

Restricted access

Kevin R. Short, Melinda Sheffield-Moore and David L. Costill

This investigation was undertaken to determine whether consuming several small feedings of preexercise carbohydrate (CHO), rather than a single bolus, would affect blood glucose and insulin responses during rest and exercise. Eight trained cyclists ingested 22.5,45, or 75 total g maltodextrin and dextrose dissolved in 473 ml of water or an equal volume of placebo (PL). Drinks were divided into four portions and consumed at 15-min intervals in the hour before a 120-min ride at 66% VO2max. Serum glucose values were elevated by the CHO feedings at rest and fell significantly below baseline and PL at 15 min of exercise. However, glucose concentrations were similar in each of the CHO trials. Insulin concentrations also increased rapidly during rest, then fell sharply at the onset of exercise. The findings demonstrate that CHO consumed within an hour before exercise, even when taken in several small feedings, can produce transient hypoglycemia near the onset of exercise. Additionally, the magnitude of the response appears to be unrelated to either the amount of CHO ingested or the insulin response.

Restricted access

David Preen, Brian Dawson, Carmel Goodman, John Beilby and Simon Ching

The purposes of this investigation were first to determine the impact of 3 different creatine (Cr) loading procedures on skeletal muscle total Cr (TCr) accumulation and, second, to evaluate the effectiveness of 2 maintenance regimes on retaining intramuscular TCr stores, in the 6 weeks following a 5-day Cr loading program (20 g · day−1). Eighteen physically active male subjects were divided into 3 equal groups and administered either: (a) Cr (4 X 5 g · day−1 X 5 days), (b) Glucose+Cr (1 g · kg−1 of body mass twice per day), or (c) Cr in conjunction with 60 min of daily muscular (repeated-sprint) exercise. Following the 5-day loading period, subjects were reassigned to 3 maintenance groups and ingested either 0 g · day−1, 2 g · day−1 or 5 g · day−1 of Cr for a period of 6 weeks. Muscle biopsy samples (vastus lateralis) were taken pre- and post-loading as well as post-maintenance and analyzed for skeletal muscle ATP, phosphocreatine (PCr), Cr, and TCr concentrations. Twenty-four hour urine samples were collected for each of the loading days and last 2 maintenance days, and used to determine whole body Cr retention. Post-loading TCr stores were significantly (p < .05) increased in all treatment conditions. The Glucose+Cr condition produced a greater elevation (p < .05) in TCr concentrations (25%) than the Cr Only (16%) or Exercise+Cr (18%) groups. Following the maintenance period, muscle TCr stores were still similar to post-loading values for both the 2 g · day−1 and 5 g · day−1 conditions. Intramuscular TCr values for the 0 g · day−1 condition were significantly lower than the other conditions after the 6-week period. Although not significantly different from pre-loading concentrations, muscle TCr for the 0 g · day−1 group had not fully returned to baseline levels at 6 weeks post-loading. The data suggests that Glucose+Cr (but with a much smaller glucose intake than currently accepted) is potentially the most effective means of elevating TCr accumulation in human skeletal muscle. Furthermore, after 5 days of Cr loading, elevated muscle TCr concentrations can be maintained by the ingestion of small daily Cr doses (2-5 g) for a period of 6 weeks and that TCr concentrations may take longer than currently accepted to return to baseline values after such a Cr loading regime.