Search Results

You are looking at 11 - 20 of 495 items for :

Clear All
Restricted access

Andrew R. Coggan, Robert J. Spina, Wendy M. Kohrt, Dennis M. Bier and John O. Holloszy

We hypothesized that when plasma glucose availability is maintained by carbohydrate (CHO) ingestion, trained cyclists can utilize plasma glucose at very high rates during the later stages of prolonged exercise (10). To test this hypothesis, a well-trained male cyclist was studied during exercise to fatigue at 70% VO2max when ingesting glucose throughout exercise. A primed continuous infusion of [U-13C]glucose was begun after 60 min of exercise to measure rates of plasma glucose appearance (Ra), disappearance (Rd), and oxidation (Rox). Ra and Rd rose progressively throughout exercise, peaking at 6.85 and 6.99 mmollmin, respectively, at fatigue (i.e., 133 min). Most (93%) of this glucose was oxidized; during the final 30 min of exercise, Rox, averaged 6.10 mmollmin and accounted for approximately half of total CHO oxidation. These results support the hypothesis that trained cyclists can oxidize plasma glucose at very high rates during the later stages of prolonged exercise when fed CHO.

Restricted access

Stephen P. Bailey, Julie Hibbard, Darrin La Forge, Madison Mitchell, Bart Roelands, G. Keith Harris and Stephen Folger

examined differences in exercise performance, comparing glucose and maltodextrin MR with artificial sweeteners in elite cyclists. These investigators found that cycle time-trial performance times were significantly improved when either 6.4% glucose or maltodextrin rinse was used prior to exercise. During

Restricted access

Edwin Chong, Kym J. Guelfi and Paul A. Fournier

This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract.

Restricted access

Alan J. McCubbin, Anyi Zhu, Stephanie K. Gaskell and Ricardo J.S. Costa

guidelines during prolonged endurance exercise (>2.5 hr) suggest that up to 90 g/hr be consumed by combining glucose and/or its polymers with fructose ( Thomas et al., 2016 ). This approach is recommended to maximize exogenous carbohydrate provision, while aiming to minimize exercise

Restricted access

Darren Triplett, J. Andrew Doyle, Jeffrey C. Rupp and Dan Benardot

A number of recent research studies have demonstrated that providing glucose and fructose together in a beverage consumed during exercise results in significantly higher oxidation rates of exogenous carbohydrate (CHO) than consuming glucose alone. However, there is insufficient evidence to determine whether the increased exogenous CHO oxidation improves endurance performance. The purpose of this study was to determine whether consuming a beverage containing glucose and fructose (GF) would result in improved cycling performance compared with an isocaloric glucose-only beverage (G). Nine male competitive cyclists (32.6 ± 5.8 years, peak oxygen uptake 61.5 ± 7.9 ml · kg-1 · min-1) completed a familiarization trial and then 2 simulated 100-km cycling time trials on an electronically braked Lode cycle ergometer separated by 5–7 d. During the randomly ordered experimental trials, participants received 36 g of CHO of either G or GF in 250 ml of water every 15 min. All 9 participants completed the 100-km time trial significantly faster when they received the GF beverage than with G (204.0 ± 23.7 vs. 220.6 ± 36.6 min; p = .023). There was no difference at any time point between trials for blood glucose or for blood lactate. Total CHO oxidation increased significantly from rest during exercise but was not statistically significant between the GF and G trials, although there was a trend for CHO oxidation to be higher with GF in the latter stages of the time trial. Consumption of a CHO beverage containing glucose and fructose results in improved 100-km cycling performance compared with an isocaloric glucose-only beverage.

Restricted access

James A. Lang, Carl V. Gisolfi and G. Patrick Lambert

The purpose of this study was to determine the effects of exercise intensity on active and passive intestinal glucose absorption. Eight trained runners (age = 23 ± 2 y; VO2max = 62.1 ± 5.8 mL · kg−1 · min−1) performed a 1 h resting experiment and three 1 h treadmill experiments at 30, 50, or 70% VO2max in a thermoneutral environment. Immediately prior to each experiment, euhydrated subjects ingested a solution containing two non-metabolizable glucose analogs, 3-O-methyl-D-glucose (3MG; actively absorbed; 5 g) and D-xylose (passively absorbed; 5 g). During the following 5 h, all urine was collected and the amount of 3MG and D-xylose in the urine was determined. Using repeated measures ANOVA, a significant (P < 0.05) reduction in urinary excretion of each carbohydrate was observed at 70% VO2max compared to the other intensities suggesting that both active and passive intestinal absorption of glucose may be reduced during prolonged running at this intensity.

Restricted access

Marie Dunford and Charlotte Saunders

The determination of blood glucose response to various carbohydrate foods may help athletes in their choice of preexercise feedings. This case study documented the postprandial glycemic responses of three male endurance athletes at rest after ingestion of 50-gram portions of three carbohydrate foods: graham crackers, orange juice, and oatmeal. Plasma glucose response differed in each subject for each test food. Two of the three subjects exhibited similar glycemic responses, but not to the same test food. Future studies will clarify the relationship between carbohydrate ingestion and postprandial glucose response.

Restricted access

Mark A. Tarnopolsky, Kerry Dyson, Stephanie A. Atkinson, Duncan MacDougall and Cynthia Cupido

We studied the effects of different CHO supplements on exercise metabolism (1 hr at 75% V˙O2) and performance (fatigue time at 85% V˙O2) in 8 male endurance athletes (VO2max=68.8±3.8 mlkg1min1) Four treatments were administered in a randomized, double-blind fashion: Trial A = 3-day pretest, postexercise supplementation (177 kcal [81% carbohydrate, 19% protein] consumed < 10 min after exercise) + 600 ml 8% glucose polymers/ fructose 1 hr pretesting + 600 ml 8% glucose polymers/glucose during testing; Trial B = placebo during 3-day pretest + remainder same as Trial A; Trial C = placebo at all time points; and Trial D = same as Trial B with 8% glucose 1 hr before the test as well as during the test. Time to fatigue at 85% V˙O2max (Í24%) and total CHO oxidation were greater for A versus C (p < .05). Plasma glucose concentration was higher for A and B versus C, while increases in plasma potassium concentration were attenuated for A versus C (both p < .05). None of the supplements had differential effects upon hematocrit, plasma sodium [Na+] and lactate, V˙O2, or rating of perceived exertion during exercise. Three-day preexercise protein + carbohydrate supplements followed by 1-hr pre- and during-exercise mixed carbohydrate supplements increased time to fatigue and carbohydrate oxidation and attenuated rises in plasma [K+] com pared to placebo.

Restricted access

Hedy C. Reynolds, Loren Cordain, Mary A. Harris and Sheri Linnell

Thirteen trained runners were studied to determine whether postexercise glucose ingestion contributes to electrocardiogram (ECG) alterations by enhancing decreases in serum potassium (K+) concentrations. For the two randomly ordered trials, subjects ingested a 100 g (25% w/v glucose polymer) drink, either alone or with the addition of 3 g of potassium chloride (KCI), within 15 min following a 90-min run. ECG parameters, serum K+, and glucose concentrations were measured preexercise (Time 0), 2-3 min postexercise (Time 1), and 25 (Time 2) and 60 (Time 3) min postexercise. The data suggest that postexercise glucose ingestion may cause ECG changes that are not directly related to the return of K+ to muscle, and that these changes, although characteristic of hypokalemia, may be related to serum glucose excursions rather than to absolute levels of serum K+. The addition of KCl may have prevented these changes by delaying gastric emptying of glucose.

Restricted access

Michael C. Riddell, Oded Bar-Or, Beatriz V. Ayub, Randolph E. Calvert and George J.F. Heigenhauser

There are currently no guidelines regarding the carbohydrate (CHO) dosage required to prevent exercise-induced hypoglycemia in children with insulin-dependent diabetes mellitus (IDDM). To prevent hypoglycemia by matching glucose ingestion with total-CHO utilization, 20 adolescents with IDDM attended 2 trials: control (CT; drinking water) and glucose (GT; drinking 6-8% glucose). Participants performed 60 min of moderate-intensity cycling 100 min after insulin injection and breakfast. CT's total-CHO utilization during exercise was determined using indirect calorimetry. In GT, participants ingested glucose in the amount equal to total CHO utilization in the CT. A total of 9 participants had BG <4.0 mmol/L in CT compared to 3 in GT (p < .05). In conclusion, glucose ingestion equal to total-CHO utilization attenuates the drop in blood glucose and reduces the likelihood of hypoglycemia during exercise in adolescents with IDDM.