Search Results

You are looking at 11 - 20 of 3,828 items for :

Clear All
Restricted access

Antoine Falisse, Sam Van Rossom, Johannes Gijsbers, Frans Steenbrink, Ben J.H. van Basten, Ilse Jonkers, Antonie J. van den Bogert and Friedl De Groote

Musculoskeletal models for biomechanical simulations have become increasingly popular to analyze human movement. In addition to joint kinematics and kinetics, musculoskeletal models enable researchers and clinicians to assess other biomechanical variables, such as muscle lengths and forces

Restricted access

Bart Roelands and Kevin De Pauw

Human performance optimization is probably the most studied topic in sport science, as it is in other closely related areas such as rehabilitation or settings like industry and the army. In the International Journal of Sports Physiology and Performance ( IJSPP ), an abundance of studies appears

Restricted access

Maarten F. Bobbert, Han Houdijk, Jos J. de Koning and Gert de Groot

To gain a better understanding of push-off mechanics in speed skating, forward simulations were performed with a model comprising four body segments and six muscles. We started with a simulated maximum height one-legged jump, obtained by optimization of muscle stimulation time histories. The simulated jump was very similar to one-legged jumps produced by a human, indicating that the model was realistic. We subsequently studied how performance was affected by introducing four conditions characteristic of speed skating: (a) We changed the initial position from that in jumping to that at the start of the push-off phase in skating. This change was accommodated by a delay in stimulation onset of the plantar flexors in the optimal solution. (b) The friction between foot and ground was reduced to zero. As a result, maximum jump height decreased by 1.2 cm and performance became more sensitive to errors in muscle stimulation. The reason is that without surface friction, the foot had to be prevented from slipping away, which constrained the solution space and reduced the tolerance to errors in stimulation. (c) We introduced the requirement to maintain the upper body in a more or less horizontal position. This change could be accommodated by a delay in stimulation onset of the hamstrings, which inevitably caused a reduction in maximum jump height by 11.6 cm. (d) We increased the effective foot length from 16.5 cm, representative of jumping, to 20.5 cm, representative of skating with klapskates. At the 20.5-cm foot length, rotation of the foot did not start during the buildup of plantar flexion moment as it did at smaller foot lengths, but was delayed until hip and knee extension moments decreased. This caused an unbalanced increase in segment angular velocities and muscle shortening velocities, leading to a decrease in muscle force and muscle work and a further decrease in maximum jump height by approximately 5 cm. Qualitatively, these findings help clarify why and how performance of speed skaters depends on the location of the hinge of their skate.

Restricted access

Ilkka Heinonen, Jukka Kemppainen, Toshihiko Fujimoto, Juhani Knuuti and Kari K. Kalliokoski

-Czernik, 2012 ). Human bone marrow circulation responds to acute exercise ( Heinonen et al., 2013a , 2013b ) and local heat stress ( Heinonen et al., 2011a ), although to a lesser degree than in contracting skeletal muscles ( Heinonen et al., 2007 , 2010a , 2011b , 2015 ). In addition to its perfusion, the

Restricted access

Daniel P. Ferris and Bryan R. Schlink

Robotic exoskeletons and bionic prostheses have moved from science fiction to science reality in the last decade. These robotic devices for assisting human movement are now technically feasible given recent advancements in robotic actuators, sensors, and computer processors. However, despite the ability to build robotic hardware that is wearable by humans, we still do not have optimal controllers to allow humans to move with coordination and grace in synergy with the robotic devices. We consider the history of robotic exoskeletons and bionic limb prostheses to provide a better assessment of the roadblocks that have been overcome and to gauge the roadblocks that still remain. There is a strong need for kinesiologists to work with engineers to better assess the performance of robotic movement assistance devices. In addition, the identification of new performance metrics that can objectively assess multiple dimensions of human performance with robotic exoskeletons and bionic prostheses would aid in moving the field forward. We discuss potential control approaches for these robotic devices, with a preference for incorporating feedforward neural signals from human users to provide a wider repertoire of discrete and adaptive rhythmic movements.

Restricted access

Adrián Hernández-Vicente, Alejandro Santos-Lozano, Carmen Mayolas-Pi, Gabriel Rodríguez-Romo, Helios Pareja-Galeano, Natalia Bustamante, Eva M. Gómez-Trullén, Alejandro Lucia and Nuria Garatachea

The population of centenarians (≥100 years) is steadily increasing globally ( Byass, 2008 ) being the paradigm of human extreme longevity and healthy aging because they have postponed, if not avoided, major age-related diseases, for example, cancer, cardiovascular disease, or neurodegeneration

Restricted access

Richard E.A. Van Emmerik, Michael T. Rosenstein, William J. McDermott and Joseph Hamill

Nonlinear dynamics and dynamical systems approaches and methodologies are increasingly being implemented in biomechanics and human movement research. Based on the early insights of Nicolai Bernstein (1967), a significantly different outlook on the movement control “problem” over the last few decades has emerged. From a focus on relatively simple movements has arisen a research focus with the primary goal to study movement in context, allowing the complexity of patterns to emerge. The approach taken is that the control of multiple degrees-of-freedom systems is not necessarily more difficult or complex than that of systems only comprising a few degrees of freedom. Complex patterns and dynamics might not require complex control structures. In this paper we present a tutorial overview of the mathematical underpinnings of nonlinear dynamics and some of its basic analysis tools. This should provide the reader with a basic level of understanding about the mathematical principles and concepts underlying pattern stability and change. This will be followed by an overview of dynamical systems approaches in the study of human movement. Finally, we discuss recent progress in the application of nonlinear dynamical techniques to the study of human locomotion, with particular focus on relative phase techniques for the assessment of coordination.

Restricted access

Michael J. Grey, Charles W. Pierce, Theodore E. Milner and Thomas Sinkjaer

The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex during the dynamic condition was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms.

Restricted access

Anantha Narayanan, Farzanah Desai, Tom Stewart, Scott Duncan and Lisa Mackay

different behaviors impact health separately, but an emerging paradigm— time-use epidemiology —has prompted researchers to examine the interactions among these behaviors across complete (24 h) days. 4 For this to occur, uninterrupted measurement of human movement behavior is required. Advancements in both

Open access

Salomé Aubert, Joel D. Barnes, Nicolas Aguilar-Farias, Greet Cardon, Chen-Kang Chang, Christine Delisle Nyström, Yolanda Demetriou, Lowri Edwards, Arunas Emeljanovas, Aleš Gába, Wendy Y. Huang, Izzeldin A.E. Ibrahim, Jaak Jürimäe, Peter T. Katzmarzyk, Agata Korcz, Yeon Soo Kim, Eun-Young Lee, Marie Löf, Tom Loney, Shawnda A. Morrison, Jorge Mota, John J. Reilly, Blanca Roman-Viñas, Natasha Schranz, John Scriven, Jan Seghers, Thomas Skovgaard, Melody Smith, Martyn Standage, Gregor Starc, Gareth Stratton, Tim Takken, Tuija Tammelin, Chiaki Tanaka, David Thivel, Richard Tyler, Alun Williams, Stephen H.S. Wong, Paweł Zembura and Mark S. Tremblay

physical, mental, social, and cognitive health outcomes. 4 – 7 The Human Development Index (HDI) is a composite index, ranging from 0 to 1, calculated using education, life expectancy, and per capita income. 8 This index was created by the United Nations Development Programme to rank countries on a scale