Search Results

You are looking at 11 - 20 of 63 items for :

  • "leukocytes" x
Clear All
Restricted access

Michael Gleeson, Nicolette C. Bishop, Marta Oliveira and Pedro Tauler

The purpose of this study was to examine the effects of a probiotic supplement during 4 mo of winter training in men and women engaged in endurance-based physical activities on incidence of upper respiratory-tract infections (URTIs) and immune markers. Eighty-four highly active individuals were randomized to probiotic (n = 42) or placebo (n = 42) groups and, under double-blind procedures, received probiotic (PRO: Lactobacillus casei Shirota [LcS]) or placebo (PLA) daily for 16 wk. Resting blood and saliva samples were collected at baseline and after 8 and 16 wk. Weekly training and illness logs were kept. Fifty-eight subjects completed the study (n = 32 PRO, n = 26 PLA). The proportion of subjects on PLA who experienced 1 or more weeks with URTI symptoms was 36% higher than those on PRO (PLA 0.90, PRO 0.66; p = .021). The number of URTI episodes was significantly higher (p < .01) in the PLA group (2.1 ± 1.2) than in the PRO group (1.2 ± 1.0). Severity and duration of symptoms were not significantly different between treatments. Saliva IgA concentration was higher on PRO than PLA, significant treatment effect F(1, 54) = 5.1, p = .03; this difference was not evident at baseline but was significant after 8 and 16 wk of supplementation. Regular ingestion of LcS appears to be beneficial in reducing the frequency of URTI in an athletic cohort, which may be related to better maintenance of saliva IgA levels during a winter period of training and competition.

Restricted access

Tzai-Li Li and Michael Gleeson

This study compared immunoendocrine responses to a single bout of prolonged cycling at different times of day and to a 2nd bout of cycling at the same intensity on the same day. In a counterbalanced design, 8 men participated in 3 experimental trials separated by at least 4 d. In the afternoon exercise-only trial, subjects cycled for 2 h at 60% VO2max starting at 14:00. In the other 2 trials, subjects performed either 2 bouts of cycling at 60% VO2max for 2 h (starting at 09:00 and 14:00) or a separate resting trial. The single bout of prolonged exercise performed in the afternoon induced a larger neutrophilia and monocy-tosis than the identical bout of morning exercise, possibly the result of reduced carbohydrate availability and the circadian rhythm in cortisol levels. The 2nd prolonged exercise bout caused greater immunoendocrine responses but lower plasma glucose levels and neutrophil function compared with the 1st bout.

Restricted access

Thiago R.S. Tenório, P. Babu Balagopal, Lars B. Andersen, Raphael M. Ritti-Dias, James O. Hill, Mara C. Lofrano-Prado and Wagner L. Prado

subtype leukocyte counts were determined by fluorescent flow cytometry using an automated hematology analyzer (Sysmex XE 2100 ™ ; Sysmex America, Inc, Mundelein, IL). Glucose concentrations were measured using the ADVIA 1650 automated analyzer (Bayer HealthCare Ltd, Tarrytown, NY). Serum tumor necrosis

Restricted access

Stewart J. Laing, Samuel J. Oliver, Sally Wilson, Robert Walters, James L.J Bilzon and Neil P. Walsh

The aim was to investigate the effects of 48 hr of fluid, energy, or combined fluid and energy restriction on circulating leukocyte and lymphocyte subset counts (CD3+, CD4+, and CD8+) and bacterially stimulated neutrophil degranulation at rest and after exercise. Thirteen healthy men (M ± SEM age 21 ± 1 yr) participated in 4 randomized 48-hr trials. During control (CON) participants received their estimated energy (2,903 ± 17 kcal/day) and fluid (3,912 ± 140 ml/day) requirements. During fluid restriction (FR) they received their energy requirements and 193 ± 19 ml/day water to drink. During energy restriction (ER) they received their fluid requirements and 290 ± 6 kcal/day. Fluid and energy restriction (F+ER) was a combination of FR and ER. After 48 hr, participants performed a 30-min treadmill time trial (TT) followed by rehydration (0–2 hr) and refeeding (2–6 hr). Circulating leukocyte and lymphocyte counts remained unchanged for CON and FR. Circulating leukocyte, lymphocyte, CD3+, and CD4+ counts decreased by ~20% in ER and ~30% in F+ER by 48 hr (p < .01), returning to within 0-hr values by 6 hr post-TT. Circulating neutrophil count and degranulation were unaltered by dietary restriction at rest and after TT. In conclusion, a 48-hr period of ER and F+ER, but not FR, decreased circulating leukocyte, lymphocyte, CD3+, and CD4+ counts but not neutrophil count or degranulation. Circulating leukocyte and lymphocyte counts normalized on refeeding. Finally, dietary restriction did not alter circulating leukocyte, lymphocyte, and neutrophil responses to 30 min of maximal exercise.

Restricted access

David C. Nieman, Giuseppe Valacchi, Laurel M. Wentz, Francesca Ferrara, Alessandra Pecorelli, Brittany Woodby, Camila A. Sakaguchi and Andrew Simonson

.J. , . . . Mayer , E.P. ( 2007 ). Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA . Journal of Applied Physiology, 103, 1728 – 1735 . doi: 10.1152/japplphysiol.00707.2007 Nieman , D.C. , Henson , D.A. , Maxwell , K.R. , Williams , A

Restricted access

Susan Shore and Roy J. Shephard

Immune responses have been examined in 11 children aged 10.3 ± 0.6 years before and after 12 weeks of aerobic training. Initial resting data showed high total lymphocyte, CD3+ and CD8+ counts, a low CD4+/CD8+ ratio and a low CD25+ count relative to young adults. Acute exercise (30 min at ventilatory threshold) initially increased CD4+, CD8+, and CD56+ counts, and decreased CD4+/CD8+ ratio, but CD56+ count did not decrease during recovery. After training, relative aerobic power remained unchanged at 50 ±3 ml · kg−1 · min−1. However, resting leukocyte, CD3’ and CD25’ counts were decreased, and acute exercise induced smaller changes in leukocyte and subset counts. We conclude that immune responses to exercise are generally similar in children and young adults.

Restricted access

Michael A. Penkman, Catherine J. Field, Christopher M. Sellar, Vicki J. Harber and Gordon J. Bell

Purpose:

This study determined the effect of dehydration and rehydration (DR) on performance, immune cell response, and tympanic temperature after high-intensity rowing exercis.

Methods:

Seven oarswomen completed two simulated 2000-m rowing race trials separated by 72 h in a random, cross-over design. One trial was completed in a euhydrated (E) condition and the other using a DR protocol.

Results:

The DR condition resulted in a 3.33 ± 0.14% reduction in body mass (P < .05) over a 24-h period followed by a 2-h rehydration period immediately before the simulated rowing race. There was a greater change in tympanic temperature observed in the DR trial (P < .05). There were increases in the blood concentration of leukocytes, lymphocytes, lymphocyte subsets (CD3+, CD3+/4+, CD3+/8+, CD3/16+, CD4+/25+; P < .05) and decreases in lymphocyte proliferation and neutrophil oxidative burst activity immediately following the simulated race (P < .05) in both trials. Blood leukocyte and neutrophil concentrations were greater after exercise in the DR trial (P < .05). Whereas most immune measures returned to resting values after 60 min of recovery in both trials, lymphocyte proliferation and the concentrations of CD3+/4+ and CD4+/25+ cells were significantly lower than before exercise. Blood leukocyte and neutrophil concentrations were significantly higher before and after exercise in the E trial.

Conclusion:

The effects of dehydration/rehydration did not negatively influence simulated 2000-m rowing race performance in lightweight oarswomen but did produce a higher tympanic temperature and had a differential effect on blood leukocyte, neutrophil, and natural killer (CD3/16+) cell concentrations after exercise compared with the euhydrated state.

Restricted access

Marco Machado, Alexander J. Koch, Jeffrey M. Willardson, Frederico C. dos Santos, Victor M. Curty and Lucas N. Pereira

Purpose:

The purpose of this study was to evaluate the effects of caffeine ingestion before a resistance exercise session on markers of muscle damage (CK, LDH, ALT, AST) and leukocyte levels.

Methods:

Fifteen soccer athletes completed two resistance exercise sessions that differed only in the ingestion of caffeine or a placebo preworkout.

Results:

CK concentration increased significantly following the caffeine session (415.8 ± 62.8 to 542.0 ± 73.5) and the placebo session (411.5 ± 43.3 to 545.8 ± 59.9), with no significant differences between sessions. Similarly, LDH concentration increased significantly following the caffeine session (377.5 ± 18.0 to 580.5 ± 36.1) and the placebo session (384.8 ± 13.9 to 570.4 ± 36.1), with no significant differences between sessions. Both sessions resulted in significant increases in the total leukocyte count (caffeine = 6.24 ± 2.08 to 8.84 ± 3.41; placebo = 6.36 ± 2.34 to 8.77 ± 3.20), neutrophils (caffeine = 3.37 ± 0.13 to 5.15 ± 0.28; placebo = 3.46 ± 0.17 to 5.12 ± 0.24), lymphocytes (caffeine = 2.19 ± 0.091 to 2.78 ± 0.10; placebo = 2.17 ± 0.100 to 2.75 ± 0.11), and monocytes (caffeine = 0.53 ± 0.02 to 0.72 ± 0.06; placebo = 0.56 ± 0.03 to 0.69 ± 0.04), with no significant differences between sessions.

Conclusion:

Ingestion of caffeine at 4.5 mg⋅kg-1 did not augment markers of muscle damage or leukocyte levels above that which occurs through resistance exercise alone.

Restricted access

Ricardo J.S Costa, Samuel J. Oliver, Stewart J. Laing, Robert Walters, James L.J Bilzon and Neil P. Walsh

The aim of the study was to determine the influence of immediate and 1-hr-delayed carbohydrate (CHO) and protein (PRO) feeding after prolonged exercise on leukocyte trafficking, bacterially stimulated neutrophil degranulation, saliva secretory IgA (S-IgA) responses, and circulating stress hormones. In randomized order, separated by 1 wk, 9 male runners completed 3 feeding interventions after 2 hr of running at 75% VO2max. During control (CON), participants received water (12 ml/kg body mass [BM]) immediately and 1 hr postexercise. During immediate feeding (IF), participants received a CHO-PRO solution equal to 1.2 g CHO/kg BM and 0.4 g PRO/kg BM immediately postexercise and water 1 hr postexercise. During delayed feeding (DF), participants received water immediately postexercise and CHO-PRO solution 1 hr postexercise. Unstimulated saliva and venous blood samples were collected preexercise, immediately postexercise, and every 20 min until 140 min postexercise. No significant interactions were observed for circulating leukocytes and T-lymphocyte subset counts, S-IgA secretion rate, or plasma cortisol, epinephrine, or norepinephrine concentration. Bacterially stimulated neutrophil degranulation decreased during recovery on CON and DF (24% and 31%, respectively, at 140 min; p < .01) but not on IF. Compared with CON, neutrophil degranulation was higher on IF at 100 min postexercise and higher on IF than DF at 80 min and 100 min onward postexercise (p < .05). Ingestion of a CHO-PRO solution immediately after, but not 1 hr after, prolonged strenuous exercise prevented the decrease in neutrophil degranulation but did not alter circulating stress hormone, leukocyte trafficking, or S-IgA responses. Further research should identify the independent effect of different quantities of CHO and PRO ingestion during recovery on neutrophil responses and other aspects of immune function.

Restricted access

Lara A. Carlson, Samuel Headley, Jason DeBruin, Alex P. Tuckow, Alexander J. Koch and Robert W. Kenefick

This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 ± 1.4 yr, 177.2 ± 5.5 cm, 80.9 ± 9.7 kg, 8.7% ± 3.8% fat) and 10 male ice hockey athletes (21.0 ± 2.2 yr, 174.3 ± 6.2 cm, 79.6 ±11.1 kg, 13.9% ± 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE.