Search Results

You are looking at 11 - 20 of 687 items for :

Clear All
Open access

Amy J. Hector and Stuart M. Phillips

restriction, strategies to promote high-quality weight loss (i.e., the loss of fat mass while maintaining LBM) are of importance for elite athletes. The normal maintenance of LBM is determined by continuously opposing and fluctuating rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB

Restricted access

Hans Braun, Judith von Andrian-Werburg, Wilhelm Schänzer and Mario Thevis

source during the high-intensity parts of a football match, such as sprints and jumps. Thus, sufficient CHO and protein intake is required in order to replenish glycogen stores as well as maintain body weight (BW) and synthesize muscle tissue ( 52 ). For the development of appropriate dietary

Open access

Oliver C. Witard, Ina Garthe and Stuart M. Phillips

Dietary protein is widely regarded as a key nutrient for allowing optimal training adaptation ( Tipton, 2008 ) and optimizing body composition ( Hector & Phillips, 2018 ; Murphy et al., 2015 ) in athletes including track and field athletes. Track and field athletics encompasses a broad spectrum of

Restricted access

Luc J.C. van Loon

Protein, protein hydrolysates, and amino acids have become popular ingredients in sports nutrition. The use of protein, protein hydrolysates, and amino acid mixtures has multiple applications when aiming to improve post exercise recovery. After exhaustive endurance-type exercise, muscle glycogen repletion is the most important factor determining the time needed to recover. Coingestion of relatively small amounts of protein and/or amino acids with carbohydrate can be used to augment postprandial insulin secretion and accelerate muscle glycogen synthesis rates. Furthermore, it has been well established that ingesting protein, protein hydrolysates, and amino acid can stimulate protein synthesis and inhibit protein breakdown and, as such, improve net muscle protein balance after resistance- or endurance-type exercise. The latter has been suggested to lead to a more effective adaptive response to each successive exercise bout. To augment net muscle protein accretion, athletes involved in resistance-type exercise generally ingest both protein and carbohydrate during post exercise recovery. However, carbohydrate ingestion after resistance-type exercise does not seem to be warranted to further stimulate muscle protein synthesis or improve whole-body protein balance when ample protein has already been ingested. Because resistance-type exercise is also associated with a substantial reduction in muscle glycogen content, it would be preferred to coingest some carbohydrate when aiming to accelerate glycogen repletion. More research is warranted to assess the impact of ingesting different proteins, protein hydrolysates, and/or amino acids on muscle protein accretion after exercise.

Restricted access

Megan Colletto and Nancy Rodriguez

; Paddon-Jones & Rasmussen, 2009 ). Physical activity, strength training in particular, improves whole body protein balance (WBPB) in older individuals ( Timmerman et al., 2012 ; Walker et al., 2011 ). Of significance to this investigation is the potential of yoga as an alternative exercise option for the

Restricted access

William Abbott, Adam Brett, Emma Cockburn and Tom Clifford

to accelerate the remodeling process. 3 One of the most frequently recommended strategies to stimulate the latter is immediate protein feeding. 3 , 4 Indeed, a number of recent reviews on the topic recommend that players consume 20 to 40 g or 0.25 to 0.4 g/kg of high-quality protein as soon as

Restricted access

Mads S. Larsen, Dagmar Clausen, Astrid Ank Jørgensen, Ulla R. Mikkelsen and Mette Hansen

overuse injuries, efficient muscle recovery is of special importance during such periods. Although the cellular mechanisms driving the acute regenerative processes are not well elucidated, a growing number of studies have unveiled the benefits of protein feeding strategies in regard to optimizing recovery

Restricted access

Protein Needs of Physically Active Children

Re: Golden Horseshoe Pediatric Exercise Group: Proceedings Paper

Kimberly A. Volterman and Stephanie A. Atkinson

Current Dietary Reference Intakes (DRI) for protein for children and youth require revision as they were derived primarily on nitrogen balance data in young children or extrapolated from adult values; did not account for the possible influence of above average physical activity; and did not set an upper tolerable level of intake. Revision of the protein DRIs requires new research that investigates: 1) long-term dose-response to identify protein and essential amino acid requirements of both sexes at various pubertal stages and under differing conditions of physical activity; 2) the acute protein needs (quantity and timing) following a single bout of exercise; 3) the potential adverse effects of chronic high intakes of protein; and 4) new measurement techniques (i.e., IAAO or stable isotope methodologies) to improve accuracy of protein needs. While active individuals may require protein in excess of current DRIs, most active Canadian children and youth have habitual protein intakes that exceed current recommendations.

Restricted access

Kevin D. Tipton

Adaptations to exercise training are determined by the response of metabolic and molecular mechanisms that determine changes in proteins. The type, intensity, and duration of exercise, as well as nutrition, determine these responses. The importance of protein, in the form of intact proteins, hydrolysates, or free amino acids, for exercise adaptations is widely recognized. Exercise along with protein intake results in accumulation of proteins that influence training adaptations. The total amount of protein necessary to optimize adaptations is less important than the type of protein, timing of protein intake, and the other nutrients ingested concurrently with the protein. Acute metabolic studies offer an important tool to study the responses of protein balance to various exercise and nutritional interventions. Recent studies suggest that ingestion of free amino acids plus carbohydrates before exercise results in a superior anabolic response to exercise than if ingested after exercise. However, the difference between pre- and post exercise ingestion of intact proteins is not apparent. Thus, the anabolic response to exercise plus protein ingestion seems to be determined by the interaction of timing of nutrient intake in relation to exercise and the nutrients ingested. More research is necessary to delineate the optimal combination of nutrients and timing for various types of training adaptations. Protein and amino acid intake have long been deemed important for athletes and exercising individuals. Olympic athletes, from the legendary Milo to many in the 1936 Berlin games, reportedly consumed large amounts of protein. Modern athletes may consume slightly less than these historical figures, yet protein is deemed extremely important by most. Protein is important as a source of amino acids for recovery from exercise and repair of damaged tissues, as well as for adaptations to exercise training, such as muscle hypertrophy and mitochondrial biogenesis.

Restricted access

Kevin D. Tipton and Robert R. Wolfe

Exercise has a profound effect on muscle growth, which can occur only if muscle protein synthesis exceeds muscle protein breakdown; there must be a positive muscle protein balance. Resistance exercise improves muscle protein balance, but, in the absence of food intake, the balance remains negative (i.e., catabolic). The response of muscle protein metabolism to a resistance exercise bout lasts for 24-48 hours; thus, the interaction between protein metabolism and any meals consumed in this period will determine the impact of the diet on muscle hypertrophy. Amino acid availability is an important regulator of muscle protein metabolism. The interaction of postexercise metabolic processes and increased amino acid availability maximizes the stimulation of muscle protein synthesis and results in even greater muscle anabolism than when dietary amino acids are not present. Hormones, especially insulin and testosterone, have important roles as regulators of muscle protein synthesis and muscle hypertrophy. Following exercise, insulin has only a permissive role on muscle protein synthesis, but it appears to inhibit the increase in muscle protein breakdown. Ingestion of only small amounts of amino acids, combined with carbohydrates, can transiently increase muscle protein anabolism, but it has yet to be determined if these transient responses translate into an appreciable increase in muscle mass over a prolonged training period.