Search Results

You are looking at 11 - 20 of 65 items for :

  • "road cyclists" x
Clear All
Restricted access

Paul F.J. Merkes, Paolo Menaspà and Chris R. Abbiss

power output were dynamic. In study 1, 12 recreational male road cyclists (age 35.0 ± 7.6 y, height 178.2 ± 5.5 cm, body mass 78.9 ± 8.7 kg) completed a power profile test created and validated by Quod et al. 10 At the time of the study, the participants were riding 5.1 ± 1.0 times and for 10.3 ± 3

Restricted access

Paul F.J. Merkes, Paolo Menaspà and Chris R. Abbiss

discrepancies between studies could be due to differences in the characteristics of the cyclists. In this study, the average height and weight of the participants were 178.7 (6.6) cm and 78.9 (9.9) kg, respectively. Furthermore, the participants in this study were all amateur male road cyclists. In the study of

Restricted access

Dajo Sanders, Teun van Erp and Jos J. de Koning

competitive road cyclists. 13 As a subjective measure of internal load, sRPE was calculated using the participants’ RPE (6–20 scale) and session duration. Riders were familiarized with the RPE scale prior to the start of this study and were instructed on the use of the scale. The RPE was obtained after races

Restricted access

Cyril Granier, Chris R. Abbiss, Anaël Aubry, Yvon Vauchez, Sylvain Dorel, Christophe Hausswirth and Yann Le Meur

2002, Impellizzeri et al 1 analyzed the intensity of XCO-MTB races in a group of 5 off-road cyclists. They found that heart rate (HR) over the races averaged 171 (6) beats·min −1 , representing 90% (3%) of HR max . Furthermore, they demonstrated that these competitions are extremely demanding, with

Restricted access

Ana B. Peinado, Nuria Romero-Parra, Miguel A. Rojo-Tirado, Rocío Cupeiro, Javier Butragueño, Eliane A. Castro, Francisco J. Calderón and Pedro J. Benito

the cardiorespiratory and metabolic response during a field-based uphill TT conducted on a first-category mountain pass. Second, we aimed to compare the physiological responses kilometer by kilometer. Methods Participants Fourteen male elite road cyclists (11 amateur and 3 professional) volunteered to

Restricted access

Jeremiah J. Peiffer, Chris R. Abbiss, Eric C. Haakonssen and Paolo Menaspà

CR , Straker L , Quod MJ , Martin DT , Laursen PB . Examining pacing profiles in elite female road cyclists using exposure variation analysis . Br J Sports Med . 2010 ; 44 : 437 – 442 . PubMed ID: 18523040 doi:10.1136/bjsm.2008.047787 10.1136/bjsm.2008.047787 18523040 7. Lucia A

Restricted access

Kris Beattie, Brian P. Carson, Mark Lyons and Ian C. Kenny

Cycling economy (CE), power output at maximal oxygen uptake (WV̇O2max), and anaerobic function (ie, sprinting ability) are considered the best physiological performance indicators in elite road cyclists. In addition to cardiovascular function, these physiological indicators are partly dictated by neuromuscular factors. One technique to improve neuromuscular function in athletes is through strength training. The aim of this study was to investigate the effect of a 20-wk maximal- and explosive-strength-training intervention on strength (maximal strength, explosive strength, and bike-specific explosive strength), WV̇O2max, CE, and body composition (body mass, fat and lean mass) in cyclists. Fifteen competitive road cyclists were divided into an intervention group (endurance training and strength training: n = 6; age, 38.0 ± 10.2 y; weight, 69.1 ± 3.6 kg; height, 1.77 ± 0.04 m) and a control group (endurance training only: n = 9; age, 34.8 ± 8.5 y; weight, 72.5 ± 7.2 kg; height, 1.78 ± 0.05 m). The intervention group strength-trained for 20 wk. Each participant completed 3 assessments: physiology (CE, WV̇O2max, power at 2 and 4 mmol/L blood lactate), strength (isometric midthigh pull, squat-jump height, and 6-s bike-sprint peak power), and body composition (body mass, fat mass, overall leanness, and leg leanness). The results showed significant between- and within-group changes in the intervention group for maximal strength, bike-specific explosive strength, absolute WV̇O2max, body mass, overall leanness, and leg leanness at wk 20 (P < .05). The control group showed no significant within-group changes in measures of strength, physiology, or body composition. This study demonstrates that 20 wk of strength training can significantly improve maximal strength, bike-specific explosive strength, and absolute WV̇O2max in competitive road cyclists.

Restricted access

William J. Kraemer, Scott E. Gordon, James M. Lynch, Mariana E.M.V. Pop and Kristine L. Clark

The purpose of this investigation was to determine the effects of a 3.5-day dietary multibuffer supplement (containing predominantly inorganic phosphate, or Pj, along with bicarbonate and carnosine, i.e., PhosFuel™) on repetitive (four trials separated by 2 min rest) Wingate test (WT) performances and whole blood 2,3-diphosphoglycerate (2,3-DPG) concentrations in 10 recreationally trained road cyclists (T) and 10 normally active but untrained (UT) men. A 2-week washout period was utilized between experimental sessions. Venous blood samples were obtained via cannula once before exercise (baseline), immediately post each WT, and 3 min after the final WT (recovery). The data indicate that this supplement does not affect acid-base status with following intense anaerobic exercise and does not improve repetitive WT performance. However, the supplement does enhance post-exercise levels of 2,3-DPG and the 2,3-DPG/Hb ratio in recreationally trained cyclists while improving acute recovery of peak power in these men.

Restricted access

Rebecca T. Viner, Margaret Harris, Jackie R. Berning and Nanna L. Meyer

The purpose of this study was to assess energy availability (EA) and dietary patterns of 10 adult (29–49 years) male (n = 6) and female (n = 4) competitive (USA Cycling Category: Pro, n = 2; 1–4, n = 8) endurance cyclists (5 road, 5 off-road), with lower than expected bone mineral density (BMD; Z score < 0) across a season. Energy intake (EI) and exercise energy expenditure during preseason (PS), competition (C), and off-season (OS) were estimated from 3-day dietary records, completed once per month, across a cycling season. BMD was measured by DXA at 0 months/5 months/10 months. The Three-Factor Eating Questionnaire (TFEQ) was used to assess cognitive dietary restraint. Seventy percent of participants had low EA [(LEA); < 30 kcal·kg fat-free mass (FFM)−1·day−1] during PS, 90% during C, and 80% during OS (range: 3–37 kcal·kg FFM−1·day−1). Ninety percent of cyclists had LEA during ≥ 1 training period, and 70% had LEA across the season. Seventy percent of cyclists were identified as restrained eaters who consciously restrict EI as a means of weight control. Mean daily carbohydrate intake was below sport nutrition recommendations during each training period (PS: 3.9 ± 1.1 g·kg−1·day−1, p < .001; C: 4.3 ± 1.4 g·kg−1·day−1, p = .005; OS: 3.7 ± 1.4 g·kg−1·day−1, p = .01). There were no differences in EA and EI·kg−1 between male and female cyclists and road and off-road cyclists. Low EI, and specifically low carbohydrate intake, appears to be the main contributor to chronic LEA in these cyclists. Adult male and female competitive road and off-road cyclists in the United States may be at risk for long-term LEA. Further studies are needed to explore strategies to prevent and monitor long-term LEA in these athletes.

Restricted access

Tammie R. Ebert, David T. Martin, Brian Stephens and Robert T. Withers

Purpose:

To quantify the power-output demands of men’s road-cycling stage racing using a direct measure of power output.

Methods:

Power-output data were collected from 207 races over 6 competition years on 31 Australian national male road cyclists. Subjects performed a maximal graded exercise test in the laboratory to determine maximum aerobic-power output, and bicycles were fitted with SRM power meters. Races were described as fl at, hilly, or criterium, and linear mixed modeling was used to compare the races.

Results:

Criterium was the shortest race and displayed the highest mean power output (criterium 262 ± 30 v hilly 203 ± 32 v fl at 188 ± 30 W), percentage total race time above 7.5 W/kg (crite-rium 15.5% ± 4.1% v hilly 3.8% ± 1.7% v fl at 3.5% ± 1.4%) and SD in power output (criterium 250 v hilly 165 v fl at 169 W). Approximately 67%, 80%, and 85% of total race time was spent below 5 W/kg for criterium, hilly and fl at races, respectively. About 70, 40, and 20 sprints above maximum aerobic-power output occurred during criterium, hilly, and fl at races, respectively, with most sprints being 6 to 10 s.

Conclusions:

These data extend previous research documenting the demands of men’s road cycling. Despite the relatively low mean power output, races were characterized by multiple high-intensity surges above maximum aerobic-power output. These data can be used to develop sport-specific interval-training programs that replicate the demands of competition.