Search Results

You are looking at 11 - 20 of 109 items for :

  • "sprint training" x
Clear All
Restricted access

Live S. Luteberget, Truls Raastad, Olivier Seynnes and Matt Spencer

Fast acceleration is an important performance factor in handball. In addition to traditional sprint training (TST), resisted-sprint training (RST) is a method often used to improve acceleration. However, studies on RST show conflicting results, and underlying mechanisms have not been studied.

Purpose:

To compare the effects of RST, by sled towing, against TST on sprint performance and muscle architecture.

Methods:

Participants (n = 18) were assigned to either RST or TST and completed 2 training sessions of RST or TST per week (10 wk), in addition to their normal team training. Sprint tests (10 and 30 m) and measurements of muscle architecture were performed pre- and posttraining.

Results:

Beneficial effects were found in the 30-m-sprint test for both groups (mean; ±90% CL: TST = −0.31; ±0.19 s, RST = −0.16; ±0.13 s), with unclear differences between the groups. Only TST had a beneficial effect on 10-m time (−0.04; ±0.04 s), with a likely difference between the 2 groups (85%, ES = 0.60). Both groups had a decrease in pennation angle (−6.0; ±3.3% for TST and −2.8; ±2.0% for RST), which had a nearly perfect correlation with percentage change in 10-m-sprint performance (r = .92). A small increase in fascicle length (5.3; ±3.9% and 4.0; ±2.1% for TST and RST, respectively) was found, with unclear differences between groups.

Discussion:

TST appears to be more effective than RST in enhancing 10-m-sprint time. Both groups showed similar effects in 30-m-sprint time. A similar, yet small, effect of sprint training on muscle architecture was observed in both groups.

Restricted access

Laurent Trincat, Xavier Woorons and Grégoire P. Millet

Purpose:

Repeated-sprint training in hypoxia (RSH) has been shown as an efficient method for improving repeated-sprint ability (RSA) in team-sport players but has not been investigated in swimming. We assessed whether RSH with arterial desaturation induced by voluntary hypoventilation at low lung volume (VHL) could improve RSA to a greater extent than the same training performed under normal breathing (NB) conditions.

Methods:

Sixteen competitive swimmers completed 6 sessions of repeated sprints (2 sets of 16 × 15 m with 30 s send-off) either with VHL (RSH-VHL, n = 8) or with NB (RSN, n = 8). Before and after training, performance was evaluated through an RSA test (25-m all-out sprints with 35 s send-off) until exhaustion.

Results:

From before to after training, the number of sprints was significantly increased in RSH-VHL (7.1 ± 2.1 vs 9.6 ± 2.5; P < .01) but not in RSN (8.0 ± 3.1 vs 8.7 ± 3.7; P = .38). Maximal blood lactate concentration ([La]max) was higher after than before in RSH-VHL (11.5 ± 3.9 vs 7.9 ± 3.7 mmol/L; P = .04) but was unchanged in RSN (10.2 ± 2.0 vs 9.0 ± 3.5 mmol/L; P = .34). There was a strong correlation between the increases in the number of sprints and in [La]max in RSH-VHL only (R = .93, P < .01).

Conclusions:

RSH-VHL improved RSA in swimming, probably through enhanced anaerobic glycolysis. This innovative method allows inducing benefits normally associated with hypoxia during swim training in normoxia.

Restricted access

Thomas A. Haugen, Espen Tønnessen, Jonny Hisdal and Stephen Seiler

The overall objective of this review was to investigate the role and development of sprinting speed in soccer. Time–motion analyses show that short sprints occur frequently during soccer games. Straight sprinting is the most frequent action before goals, both for the scoring and assisting player. Straight-line sprinting velocity (both acceleration and maximal sprinting speed), certain agility skills, and repeated-sprint ability are shown to distinguish groups from different performance levels. Professional players have become faster over time, indicating that sprinting skills are becoming more and more important in modern soccer. In research literature, the majority of soccer-related training interventions have provided positive effects on sprinting capabilities, leading to the assumption that all kinds of training can be performed with success. However, most successful intervention studies are time consuming and challenging to incorporate into the overall soccer training program. Even though the principle of specificity is clearly present, several questions remain regarding the optimal training methods within the larger context of the team-sport setting. Considering time-efficiency effects, soccer players may benefit more by performing sprint-training regimens similar to the progression model used in strength training and by world-leading athletics practitioners, compared with the majority of guidelines that traditionally have been presented in research literature.

Restricted access

Carlo Castagna, Stefano D’Ottavio, Stefano Cappelli and Susana Cristina Araújo Póvoas

positive effects on anaerobic performance of additional sprint training (ie, 30-s all-out runs) in professional soccer players. SSG (ie, 1 vs 1) performed all-out (ie, 30-s bouts) were then proposed to provide sport specificity using SSG with 300 m 2 per player performed in the production mode. 4 In the

Restricted access

Brian J. McMorrow, Massimiliano Ditroilo and Brendan Egan

photoelectric timing gate (Smartspeed Lite; Fusion Sport) placed at the start line A and at the finish line F. Training Interventions Both the URS and RSS training groups completed 10 supervised sprint-training sessions over 6 weeks, and all other training sessions completed were common to all players in which

Restricted access

Franck Brocherie, Grégoire P. Millet and Olivier Girard

Purpose:

To compare psychophysiological responses to 6 repeated-sprint sessions in normobaric hypoxia (RSH) and normoxia (RSN) in team-sport athletes during a 2-wk “live high–train low” training camp.

Methods:

While residing under normobaric hypoxia (≥14 h/d, FiO2 14.5–14.2%), 23 lowland elite field hockey players performed, in addition to their usual training, 6 sessions (4 × 5 × 5-s maximal sprints, 25-s passive recovery, 5 min rest) under either RSH (FiO2 ~14.5%) or RSN (FiO2 21%). Sprint 1 and 5 times, physiological strain (heart rate [HR], arterial oxyhemoglobin saturation [SpO2]), and perceptual responses (overall peripheral discomfort, difficulty breathing, and lower-limb discomfort) were monitored.

Results:

During the 1st session, HR increased across sets (P < .001) independently of the conditions, while SpO2 was globally lower (P < .001) for RSH (averaged value: 91.9% ± 1.2%) vs RSN (96.9% ± 0.6%). Thereafter, SpO2 and HR remained similar across sessions for each condition. While 1st-sprint time remained similar, last-sprint time and fatigue index significantly decreased across sets (P < .01) and sessions (P < .05) but not between conditions. Ratings of overall perceived discomfort, difficulty breathing, and lower-limb discomfort were higher (P < .05) in RSH vs RSN at the 1st session. During subsequent sessions, values for overall perceived discomfort (time [P < .001] and condition [P < .05] effects), difficulty breathing (time effect; P < .001), and lower-limb discomfort (condition [P < .001] and interaction [P < .05] effects) decreased to a larger extent in RSH vs RSN.

Conclusion:

Despite higher hypoxia-induced physiological and perceptual strain during the 1st session, perceptual responses improved thereafter in RSH so as not to differ from RSN. This indicates an effective acclimation and tolerance to this innovative training.

Restricted access

Mark Glaister

Tests of repeated-sprint ability provide a simple way to evaluate the basic physical characteristics of speed and endurance necessary to excel in various multiple-sprint sports. Furthermore, such tests help overcome the complications associated with field-based evaluations of this type of exercise. Nevertheless, despite over 40 y of research, many issues regarding our understanding of multiple-sprint work remain unresolved. This commentary aims to raise awareness of issues relating to methodology, physiological responses, and the effectiveness of various ergogenic and training strategies; to promote a greater understanding; and to drive future research.

Restricted access

Matt R. Cross, Matt Brughelli, Pierre Samozino, Scott R. Brown and Jean-Benoit Morin

Purpose:

To ascertain whether force-velocity-power relationships could be compiled from a battery of sled-resisted overground sprints and to clarify and compare the optimal loading conditions for maximizing power production for different athlete cohorts.

Methods:

Recreational mixed-sport athletes (n = 12) and sprinters (n = 15) performed multiple trials of maximal sprints unloaded and towing a selection of sled masses (20–120% body mass [BM]). Velocity data were collected by sports radar, and kinetics at peak velocity were quantified using friction coefficients and aerodynamic drag. Individual force–velocity and power–velocity relationships were generated using linear and quadratic relationships, respectively. Mechanical and optimal loading variables were subsequently calculated and test–retest reliability assessed.

Results:

Individual force–velocity and power–velocity relationships were accurately fitted with regression models (R 2 > .977, P < .001) and were reliable (ES = 0.05–0.50, ICC = .73–.97, CV = 1.0–5.4%). The normal loading that maximized peak power was 78% ± 6% and 82% ± 8% of BM, representing a resistance of 3.37 and 3.62 N/kg at 4.19 ± 0.19 and 4.90 ± 0.18 m/s (recreational athletes and sprinters, respectively). Optimal force and normal load did not clearly differentiate between cohorts, although sprinters developed greater maximal power (17.2–26.5%, ES = 0.97–2.13, P < .02) at much greater velocities (16.9%, ES = 3.73, P < .001).

Conclusions:

Mechanical relationships can be accurately profiled using common sled-training equipment. Notably, the optimal loading conditions determined in this study (69–96% of BM, dependent on friction conditions) represent much greater resistance than current guidelines (~7–20% of BM). This method has potential value in quantifying individualized training parameters for optimized development of horizontal power.

Restricted access

David Montero and Carsten Lundby

Context:

Few recent studies indicate that short-term repeated-sprint (RS) training in hypoxia (RSH) improves RS performance compared with identical training under normoxic conditions (RSN) in endurance-trained subjects.

Purpose:

To determine the effects of RSH against RSN on RS performance under normoxic and moderate hypoxic conditions, using a randomized, doubleblind, crossover experimental design.

Methods:

Fifteen endurance-trained male subjects (age 25 ± 4 y) performed 4 wk of RS training (3 sessions/wk) in normobaric hypoxia (RSH, FiO2 = 13.8%) and normoxia (RSN, FiO2 = 20.9%) in a crossover manner. Before and after completion of training, RS tests were performed on a cycle ergometer with no prior exercise (RSNE), after an incremental exercise test (RSIE), and after a time-trial test (RSTT) in normoxia and hypoxia.

Results:

Peak power outputs at the incremental exercise test and time-trial performance were unaltered by RSH in normoxia and hypoxia. RS performance was generally enhanced by RSH, as well as RSN, but there were no additional effects of RSH over RSN on peak and mean sprint power output and the number of repeated sprints performed in the RSNE, RSIE, and RSTT trials under normoxic and hypoxic conditions.

Conclusions:

The present double-blind crossover study indicates that RSH does not improve RS performance compared with RSN in normoxic and hypoxic conditions in endurance-trained subjects. Therefore, caution should be exercised when proposing RSH as an advantageous method to improve exercise performance.

Restricted access

Fernando Pareja-Blanco, Eduardo Sáez de Villarreal, Beatriz Bachero-Mena, Ricardo Mora-Custodio, José Antonio Asián-Clemente, Irineu Loturco and David Rodríguez-Rosell

Resisted sprint training (RST) is a common training method employed to develop sprint performance, in which athletes mimic the traditional sprint movements (ie, unloaded sprints) with an added resistance. 1 Previous studies confirmed that this training strategy is able to induce positive transfer