Search Results

You are looking at 11 - 20 of 58 items for :

  • "substrate utilization" x
Clear All
Restricted access

Michael C. Riddell, Sara L. Partington, Nicole Stupka, David Armstrong, C. Rennie and Mark A. Tarnopolsky

Compared to males, females oxidize proportionately more fat and less carbohydrate during endurance exercise performed in the fasted state. This study was designed to test the hypothesis that there may also be gender differences in exogenous carbohydrate (CHOexo) oxidation during exercise. Healthy, young males (n = 7) and females (n = 7) each completed 2 exercise trials (90 min cycle ergometry at 60% VO2peak), 1 week apart. Females were eumenorrheic and were tested in the midfollicular phase of their menstrual cycle. Subjects drank intermittently either 8% CHOexo (1 g glucose · kg · h−1) enriched with U-13C glucose or an artificially sweetened placebo during the trial. Whole-body substrate oxidation was determined from RER, urinary urea excretion, and the ratio of 13C:12C in expired gas during the final 60 min of exercise. During the placebo trial, fat oxidation was higher in females than in males (0.42 · 0.07 vs. 0.32 · 0.09 g · min−1 · kg LBM–1 × 10–2) at 30 min of exercise (p < .05). When averaged over the final 60 min of exercise, the relative proportions of fat, total carbohydrate, and protein were similar between groups. During CHOexo ingestion, both the ratio of 13C:12C in expired gas (p < .05) and the proportion of energy derived from CHOexo relative to LBM (p < .05) were higher in females compared to males at 75- and 90-min exercise. When averaged over the final 60 min of exercise, the percentage of CHOexo to the total energy contribution tended to be higher in females (14.3 · 1.2%) than in males (11.2 · 1.2%; p = .09). The reduction in endogenous CHO oxidation with CHOexo intake was also greater in females (12.9 · 3.1%) than in males (5.1 · 2.0%; p = .05). Compared to males, females may oxidize a greater relative proportion of CHOexo during endurance exercise which, in turn, may spare more endogenous fuel. Based on these observations, ingested carbohydrate may be a particularly beneficial source of fuel during endurance exercise for females.

Restricted access

Emma Stevenson, Clyde Williams and Helen Biscoe

This study investigated the metabolic responses to high glycemic index (HGI) or low glycemic index (LGI) meals consumed during recovery from prolonged exercise. Eight male, trained athletes undertook 2 trials. Following an overnight fast, subjects completed a 90-min run at 70% VO2max. Meals were provided 30 min and 2 h following cessation of exercise. The plasma glucose responses to both meals were greater in the HGI trial compared to the LGI trial (P < 0.05). Following breakfast, there were no differences in the serum insulin concentrations between the trials; however, following lunch, concentrations were higher in the HGI trial compared to the LGI trial (P < 0.05). This suggests that the glycemic index of the carbohydrates consumed during the immediate post-exercise period might not be important as long as sufficient carbohydrate is consumed. The high insulin concentrations following a HGI meal later in the recovery period could facilitate further muscle glycogen resynthesis.

Restricted access

Karen Reznik Dolins, Carol N. Boozer, Felicia Stoler, Matthew Bartels, Ronald DeMeersman and Isobel Contento

This study measured the effect of variable carbohydrate intake on time to exhaustion, variations in heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) in female endurance cyclists during an exercise trial. Subjects were 11 eumenorrheic women with maximal oxygen consumption (VO2max) 60.1 ± 5.1 ml/kg who habitually cycled at least 100 miles per week. In a crossover design, each woman was randomly assigned to a eucaloric diet providing 8, 5, or 3 g of CHO/kg of body weight. Subjects cycled at least 100 miles while adhering to the diet for 6 days. The exercise trial was performed on the 7th day, consisting of a 60 min cycle at 70% VO2max, followed by an increase in intensity to 90% VO2max until that intensity could no longer be maintained. Results indicated no difference in mean time to exhaustion, heart rate, or RPE. RER increased over time-elapsed (F = 40.4, p < .001) and across diets (F = 6.1, p = .015). Conclusions: Female endurance cyclists did not experience a difference in time to exhaustion, HR, or RPE with different levels of CHO intake during an endurance trial. RER varied with diet at submaximal intensities. Further research is needed to determine the optimal level of CHO intake for this population.

Restricted access

Andreas Apostolidis, Vassilis Mougios, Ilias Smilios, Johanna Rodosthenous and Marios Hadjicharalambous

. Performance improvements could be attributed predominantly to a positive effect of caffeine on the central nervous system and/or neuromuscular function since no differences in substrate utilization were found between the caffeine and placebo trials. Acknowledgments The authors would like to gratefully

Restricted access

Mark H. Roltsch, Judith A. Flohr and Patricia B. Brevard

The purpose of this study was to examine the metabolic consequences of a moderate variation in dietary fat content of male endurance athletes during submaximal exercise. Six males (age, 29.8 ± 11 years; weight, 72.3 ± 10 kg) · with an average maximum oxygen uptake (V̇O2max) of 66 ± 10 ml/kg/min were tested on their normal diet and 3 experimental diets. The energy contributions from protein, carbohydrates, and fats were 16/59/22 (3% alcohol), 14/53/33, 13/72/15, and 16/61/23% for the normal diet (N), fat supplemented diet (F), high carbohydrate diet (C), and adjusted normal diet (AN), respectively. The F diet was designed to significantly increase fat content compared to the normal diet and be easily maintained by the athletes. Caloric content of the F, C, and AN diets were adjusted to meet estimated total daily energy expenditure. The difference between the N and AN diets is that the AN has been adjusted to meet estimated total daily energy expenditure. The diets were randomly assigned after substrate utilization testing on the N diet and were consumed for 7 days prior to testing. Substrate utilization was recorded at steady state (73 ± 1.4% of V̇O2max) while running on a treadmill for 40 min. There were no significant differences in respiratory exchange ratio between any of the dietary manipulations. No significant differences were observed for lactate, V̇O2, or HR during submaximal testing on the N, F, C, and AN diets. These data indicate that a fat supplemented diet did not affect substrate utilization during 40 min of steady-state submaximal exercise when compared to a high carbohydrate diet or the participant’s normal and adjusted normal diets.

Restricted access

Gordon I. Smith, Asker E. Jeukendrup and Derek Ball

At rest, administration of the short-chain fatty acid acetate suppresses fat oxidation without affecting carbohydrate utilization. The combined effect of increased acetate availability and exercise on substrate utilization is, however, unclear. With local ethics approval, we studied the effect of ingesting either sodium acetate (NaAc) or sodium bicarbonate (NaHCO3) at a dose of 4 mmol·kg-1 body mass 90 min before completing 120 min of exercise at 50% VO2peak. Six healthy young men completed the trials after an overnight fast and ingested the sodium salts in randomized order. As expected NaAc ingestion decreased resting fat oxidation (mean ± SD; 0.09 ± 0.02 vs. 0.07 ± 0.02 g·min-1 pre- and post-ingestion respectively, p < .05) with no effect upon carbohydrate utilization. In contrast, NaHCO3 ingestion had no effect on substrate utilization at rest. In response to exercise, fat and CHO oxidation increased in both trials, but fat oxidation was lower (0.16 ± 0.10 vs. 0.29 ± 0.11 g·min-1, p < .05) and carbohydrate oxidation higher (1.67 ± 0.35 vs. 1.44 ± 0.22 g·min-1, p < .05) in the NaAc trial compared with the NaHCO3 trial during the first 15 min of exercise. Over the final 75 min of exercise an increase in fat oxidation and decrease in carbohydrate oxidation was observed only in the NaAc trial. These results demonstrate that increasing plasma acetate concentration suppresses fat oxidation both at rest and at the onset of moderate-intensity exercise.

Restricted access

Raffy Dotan, Cameron Mitchell, Rotem Cohen, Panagiota Klentrou, David Gabriel and Bareket Falk

Children differ from adults in many muscular performance attributes such as size-normalized strength and power, endurance, fatigability and the recovery from exhaustive exercise, to name just a few. Metabolic attributes, such as glycolytic capacity, substrate utilization, and VO2 kinetics also differ markedly between children and adults. Various factors, such as dimensionality, intramuscular synchronization, agonist-antagonist coactivation, level of volitional activation, or muscle composition, can explain some, but not all of the observed differences. It is hypothesized that, compared with adults, children are substantially less capable of recruiting or fully employing their higher-threshold, type-II motor units. The review presents and evaluates the wealth of information and possible alternative factors in explaining the observations. Although conclusive evidence is still lacking, only this hypothesis of differential motor-unit activation in children and adults, appears capable of accounting for all observed child—adult differences, whether on its own or in conjunction with other factors.

Restricted access

Petra Stiegler, S. Andrew Sparks and Adam Cunliffe

Maximizing postprandial energy expenditure and fat oxidation could be of clinical relevance for the treatment of obesity. This study investigated the effect of prior exercise on energy expenditure and substrate utilization after meals containing varying amounts of macronutrients. Eight lean (11.6% ± 4.0% body fat, M ± SD) and 12 obese (35.9% ± 5.3% body fat) men were randomly assigned to a protein (43% protein, 30% carbohydrate) or a carbohydrate (10% protein, 63% carbohydrate) meal. The metabolic responses to the meals were investigated during 2 trials, when meals were ingested after a resting period (D) or cycling exercise (Ex+D; 65% of oxygen consumption reserve, 200 kcal). Energy expenditure, substrate utilization, and glucose and insulin responses were measured for 4 hr during the postprandial phase. Although postprandial energy expenditure was not affected by prior exercise, the total amount of fat oxidized was higher during Ex+D than during D (170.8 ± 60.1 g vs. 137.8 ± 50.8 g, p < .05), and, accordingly, the use of carbohydrate as substrate was decreased (136.4 ± 45.2 g vs. 164.0 ± 42.9 g, p < .05). After the protein meal fat-oxidation rates were higher than after carbohydrate intake (p < .05), an effect independent of prior exercise. Plasma insulin tended to be lower during Ex+D (p = .072) and after the protein meal (p = .066). No statistically significant change in postprandial blood glucose was induced by prior exercise. Exercising before meal consumption can result in a marked increase in fat oxidation, which is independent of the type of meal consumed.

Restricted access

Elizabeth M. Broad, Ronald J. Maughan and Stuart D.R. Galloway

The effects of 15 d of supplementation with L-carnitine L-tartrate (LC) on metabolic responses to gradedintensity exercise under conditions of altered substrate availability were examined. Fifteen endurance-trained male athletes undertook exercise trials after a 2-d high-carbohydrate diet (60% CHO, 25% fat) at baseline (D0), on Day 14 (D14), and after a single day of high fat intake (15% CHO, 70% fat) on Day 15 (D15) in a double-blind, placebo-controlled, pair-matched design. Treatment consisted of 3 g LC (2 g L-carnitine/d; n = 8) or placebo (P, n = 7) for 15 d. Exercise trials consisted of 80 min of continuous cycling comprising 20-min periods at each of 20%, 40%, 60%, and 80% VO2peak. There was no significant difference between whole-body rates of CHO and fat oxidation at any workload between D0 and D14 trials for either the P or LC group. Both groups displayed increased fat and reduced carbohydrate oxidation between the D14 and D15 trials (p < .05). During the D15 trial, heart rate (p < .05 for 20%, 40%, and 60% workloads) and blood glucose concentration (p < .05 for 40% and 60% workloads) were lower during exercise in the LC group than in P. These responses suggest that LC may induce subtle changes in substrate handling in metabolically active tissues when fattyacid availability is increased, but it does not affect whole-body substrate utilization during short-duration exercise at the intensities studied.

Restricted access

Randall L. Wilber and Robert J. Moffatt

Ten trained male runners performed a treadmill exercise test at 80% VO2max under two experimental conditions, carbohydrate (CHO, 7% carbohydrate) and placebo (P), to determine the effect of carbohydrate ingestion on endurance performance (treadmill run time), blood glucose concentration, respiratory exchange ratio (RER), and subjective ratings of perceived exertion (RPE). Treatment order was randomized and counterbalanced and test solutions were administered double-blind. Ingestion took place 5 min preexercise (250 ml) and at 15-min intervals during exercise (125 ml). Performance was enhanced by 29.4% (p ~ 0.05) during CHO (115 ±25 min) compared to P (92 ± 27 min). Blood glucose concentration was significantly greater during CHO (5.6 ± 0.9 mM) relative to P (5.0 ±0.7 mM). There was a significant increase in mean RER following CHO ingestion (.94±.01) compared to P (.90±.01). Average RPE was significantly less during CHO (14.5±2.3) relative to P (15.4±2.4). These data suggest that time to exhaustion of high-intensity treadmill exercise is delayed as a result of carbohydrate ingestion and that this effect is mediated by favorable alterations in blood glucose concentration and substrate utilization.