Search Results

You are looking at 11 - 20 of 75 items for :

  • "urine-specific gravity" x
Clear All
Restricted access

Julian A. Owen, Matthew B. Fortes, Saeed Ur Rahman, Mahdi Jibani, Neil P. Walsh and Samuel J. Oliver

immediately analyzed for urine color by an 8-point chart ( Armstrong et al., 1994 ), urine specific gravity was measured in duplicate using a handheld refractometer (Atago, Tokyo, Japan), and urine osmolality was measured in triplicate by a freezing point depression osmometer (model 3300; Advanced Instruments

Restricted access

Damir Zubac, Drazen Cular and Uros Marusic

Urine specific gravity (U SG ) is a fast, noninvasive measure of urine concentration commonly used to characterize hydration status of athletes. Therefore, the National College Athletic Association (NCAA) imposed U SG assessment in 1998 as a mandatory regulation to prevent the occurrence of tragic

Restricted access

Liam Sayer, Nidia Rodriguez-Sanchez, Paola Rodriguez-Giustiniani, Christopher Irwin, Danielle McCartney, Gregory R. Cox, Stuart D.R. Galloway and Ben Desbrow

). Ex = exercise; U SG  = urine specific gravity; P OSM  = plasma osmolality; BM = body mass; U OSM  = urine osmolality. In Part B, exercise duration and preexercise values for BM, U OSM , P OSM , and exercise-induced BM loss were similar across all treatments (Table  1 ) and did not differ

Restricted access

Lawrence E. Armstrong, Amy C. Pumerantz, Kelly A. Fiala, Melissa W. Roti, Stavros A. Kavouras, Douglas J. Casa and Carl M. Maresh

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 and 2–7). However, these men rarely (0–2% of measurements) achieved a urine specific gravity below 1.010 or color of 1. The first morning urine sample was more concentrated than the 24-h urine collection, likely because fluids were not consumed overnight. Furthermore, urine specific gravity and osmolality were strongly correlated (r2 = .81–.91, p < .001) in both morning and 24-hr collections. These findings provide euhydration reference values and hydration extremes for 7 commonly used indices in free-living, healthy, active men who were not exercising in a hot environment or training strenuously.

Restricted access

Robert McMurray, David K. Williams and Claudio L. Battaglini

Seven highly trained male triathletes, aged 18 to 35 years, were tested during two simulated Olympic distance triathlons to determine whether run performance was enhanced when consuming 177 ml of water at 8, 16, 24, and 32 kilometers (Early Trials) compared to consumption at 10, 20, 30, and 40 kilometers (Late Trials), during the cycling segment of the triathlon. Swim times for 1500 m were similar between trials; 40-km cycling times were ~10 s faster during the Late trials; however, 10-km run times were faster during the Early Trials (P < 0.02). No significant differences between run trials were found for the rating of perceived exertion, oxygen uptake, heart rate, and change in urine specific gravity. It was concluded that the consumption of fluids earlier in the cycle phase of the Olympic distance triathlon benefits the run and overall performance time.

Restricted access

Jason P. Brandenburg and Michael Gaetz

This study determined the fluid balance of elite female basketball players before and during competition. Before and during 2 international games, 17 national-level players (age 24.2 ± 3 yr, height 180.5 ± 6 cm, mass 78.8 ± 8 kg) were assessed. Fluid-balance assessment included pregame hydration level as determined by urine specific gravity (USG), change in body mass during the game, ad libitum intake of water or sports drink, and estimated sweat losses. Mean (± SD) USG before Game 1 was 1.005 ± 0.002 and before Game 2 USG equaled 1.010 ± 0.005. Players lost an average of 0.7% ± 0.8% and 0.6% ± 0.6% of their body mass during Games 1 and 2, respectively. In each game, 3 players experienced a fluid deficit >1% of body mass, and 1 other, a fluid deficit >2%. Sweat losses in both games, from the beginning of the warm-up to the conclusion of the game (~125 min with average playing time 16–17 min), were approximately 1.99 ± 0.75 L. Fluid intake in Game 1 and Game 2 equaled 77.8% ± 32% and 78.0% ± 21% of sweat losses, respectively. Most players were hydrated before each game and did not become meaningfully dehydrated during the game. It is possible that the players who experienced the highest levels of dehydration also experienced some degree of playing impairment, and the negative relationship between change in body mass and shooting percentage in Game 2 provides some support for this notion.

Restricted access

Chin Han Lew, Gary Slater, Gobinathan Nair and Michelle Miller

This study investigated the relationship between changes in upon-waking body mass (BM) and changes in urine specific gravity (Usg) and urine color (Ucol) from 1 day to the next. Throughout the 5-day investigation, healthy adolescent Singaporean athletes (n = 66) had their upon-waking, bladder-voided BM measured. A small aliquot of the first bladder void each day was collected and analyzed for Usg and Ucol, the latter by both an investigator (IUcol) and individual participants (SUcol). Results revealed a significant inverse relationship between changes in BM and changes in Usg (p = .003) and Ucol (p = .001). On average, Usg and Ucol changed by ~0.003 units and ~1 color (across a 9-unit scale), respectively, with every 1% change in BM from 1 day to the next. There was a stronger relationship between Usg and IUcol (r = .82, p < .001) than between Usg and SUcol (r = .60, p < .001). These results suggest that the degree of fluid deficit may be predicted from the Usg measurements among moderately hypohydrated athletes. In addition, training athletes to interpret and use the Ucol chart is recommended.

Restricted access

Dean G. Higham, Geraldine A. Naughton, Lauren A. Burt and Xiaocai Shi

The aim of this study was to compare daily hydration profiles of competitive adolescent swimmers and less active maturation- and sex-matched controls. Hydration profiles of 35 competitive adolescent swimmers (male n = 18, female n = 17) and 41 controls (male n = 29, female n = 12) were monitored on 4 consecutive days. First morning hydration status was determined independently by urine specific gravity (USG) and urine color. Changes in fluid balance were estimated during the school day and in training sessions after adjusting for self-reported urine losses and fluid intake. Urinalyses revealed consistent fluid deficits (USG >1.020, urine color ≥5) independent of activity group, sex, and day of testing (hypohydration in 73–85% of samples, p > .05). Fluid balance and intake were observed over typical school days in males and females from the 2 groups. During training, male swimmers lost more fluid relative to initial body mass but drank no more than females. Although both activity groups began each testing day with a similar hydration status, training induced significant variations in fluid balance in the swimmers compared with controls. Despite minimal fluid losses during individual training sessions (<2% body mass), these deficits significantly increased fluid needs for young swimmers over the school day.

Restricted access

Nora R. Decher, Douglas J. Casa, Susan W. Yeargin, Matthew S. Ganio, Michelle L. Levreault, Catie L. Dann, Camille T. James, Megan A. McCaffrey, Caitlin B. O’Connor and Scott W. Brown


To assess the hydration status and level of hydration knowledge of youths at summer sports camps.


Sixty-seven active youths, 57 males (mean ± SD, 12 ± 2 y, 136 ± 16 cm, 50.6 ± 21.1 kg) and 10 females (13 ± 2 y, 153 ± 8 cm, 45.2 ± 9.0 kg) participated in 4 d of sports camp. Hydration status was assessed before the first practice (AM) and after the second practice (PM). Participants completed suriveys assessing hydration knowledge (HAQ) and hydration habits on day 3 and a self-assessment (EQ#1).


Mean AM urine specific gravity (USG) and urine osmolality (Uosm) scores ranged from minimal to significant dehydration across 4 d, even when temperatures were mild. Correlations between hydration indices and EQ#1, ranging from 0.11 to −0.51, were statistically significant (P < .05), indicating that subjects recognized when they were doing a good or bad job hydrating. HAQ did not correlate strongly with hydration indices suggesting other impediments to hydration. Thirst correlated negatively with EQ#1 (from −0.29 to −0.60).


Hydration at summer sports camp is a concern and special efforts need to be made to help youths develop hydration strategies.

Restricted access

Lawrence E. Armstrong, Carl M. Maresh, John W. Castellani, Michael F. Bergeron, Robert W. Kenefick, Kent E. LaGasse and Deborah Riebe

Athletes and researchers could benefit from a simple and universally accepted technique to determine whether humans are well-hydrated, euhydrated, or hypohydrated. Two laboratory studies (A, B) and one field study (C) were conducted to determine if urine color (Ucol) indicates hydration status accurately and to clarify the interchangeability of Ucol, urine osmolality (Uosm), and urine specific gravity (Usg) in research. Ucol, Uosm, and Usg were not significantly correlated with plasma osmolality, plasma sodium, or hemato-crit. This suggested that these hematologic measurements are not as sensitive to mild hypohydration (between days) as the selected urinary indices are. When the data from A, B, and C were combined, Ucol was strongly correlated with Uhg and U„sm. It was concluded that (a) Ucol may be used in athletic/industrial settings or field studies, where close estimates of Usg or Uosm are acceptable, but should not be utilized in laboratories where greater precision and accuracy are required, and (b) Uosm and Usg may be used interchangeably to determine hydration status.