Search Results

You are looking at 201 - 210 of 2,106 items for :

Clear All
Restricted access

Robert Carter III, Samuel N. Cheuvront and Michael N. Sawka

Objectives:

We report our observations on one soldier with abnormal hyperthermia during exercise in the heat compared with prior exercise and following acute local (non-febrile) infection. Also, we report on 994 heat stroke hospitalizations in the U.S. Army. It is known that prior infection is a risk factor for heat illness and some of the 37 heat stroke deaths cited infections (eg, pneumonia, influenza) in the medical records.

Results:

This case report illustrates complete recovery from abnormal hyperthermia, which occurred in a laboratory setting during mild, low intensity exercise. In a field setting, this case may have resulted in serious heat illness. As with most of the heat stroke cases, rapid medical attention (ie, cooling and rehydration) and the age group (19 to 26) that represents majority of the heatstroke cases in U.S. Army are likely factors that contribute successful treatment of heatstroke in the field environment.

Conclusions:

We conclude that acute inflammatory response can augment the hyperthermia of exercise and possibly increase heat illness susceptibility. Furthermore, it is important for health care providers of soldiers and athletes to monitor acute local infections due to the potential thermoregulatory consequences during exercise in the heat.

Open access

Robin T. Thorpe, Greg Atkinson, Barry Drust and Warren Gregson

The increase in competition demands in elite team sports over recent years has prompted much attention from researchers and practitioners to the monitoring of adaptation and fatigue in athletes. Monitoring fatigue and gaining an understanding of athlete status may also provide insights and beneficial information pertaining to player availability, injury, and illness risk. Traditional methods used to quantify recovery and fatigue in team sports, such as maximal physical-performance assessments, may not be feasible to detect variations in fatigue status throughout competitive periods. Faster, simpler, and nonexhaustive tests such as athlete self-report measures, autonomic nervous system response via heart-rate-derived indices, and to a lesser extent, jump protocols may serve as promising tools to quantify and establish fatigue status in elite team-sport athletes. The robust rationalization and precise detection of a meaningful fluctuation in these measures are of paramount importance for practitioners working alongside athletes and coaches on a daily basis. There are various methods for arriving at a minimal clinically important difference, but these have been rarely adopted by sport scientists and practitioners. The implementation of appropriate, reliable, and sensitive measures of fatigue can provide important information to key stakeholders in team-sport environments. Future research is required to investigate the sensitivity of these tools to fundamental indicators such as performance, injury, and illness.

Restricted access

Christine E. Dziedzic and Dean G. Higham

Rugby sevens is an abbreviated version of rugby union, played by teams of seven players over 7-min halves. International competitions are usually played in a tournament format. While shorter in duration, the movement demands of rugby sevens per min of match time are greater than rugby union, resulting in an accentuated load on players. This load can be repeated up to six times over a typical 2- or 3-day competition period. The potential cumulative effect of inadequate carbohydrate, protein and/or fluid intake over the course of a tournament is the greatest nutrition-related concern for players. Nutritional strategies before and during competition are suggested to replenish substrate stores, maintain fluid balance and promote recovery between matches. The use of ergogenic aids known to enhance intermittent, high-intensity activity and/or the execution of motor skills may be advantageous to rugby sevens performance and is discussed. This review provides a best-practice model of nutritional support for international rugby sevens competition based on our current understanding of the sport combined with pragmatic guidelines and considerations for the practitioner.

Restricted access

Mark D. Haub, Jeffrey A. Potteiger, Dennis J. Jacobsen, Karen L. Nau, Lawrence A. Magee and Matthew J. Comeau

We investigated the effects of carbohydrate ingestion on glycogen replenishment and subsequent short duration, high intensity exercise performance. During Session 1, aerobic power was determined and each subject (N = 6) was familiarized with the 100-kJ cycling test (lOOKJ-Test). During the treatment sessions, the subjects performed a lOOKJ-Test (Ride-1), then consumed 0.7 g ⋅ kg body mass-1 of maltodextrin (CHO) or placebo (PLC), rested 60 min, and then performed a second lOOKJ-Test (Ride-2). Muscle tissue was collected before (Pre-1) and after Ride-1 (Post-1), and before (Pre-2) and after Ride-2 (Post-2), and analyzed for glycogen concentration. Both treatments yielded a significant increase in glycogen levels following the 60-min recovery, but there was no difference between treatments. Time to complete the lOOKJ-Test increased significantly for PLC, but not for CHO. These data indicate that the decrease in performance during Ride-2 in PLC was not the result of a difference in glycogen concentration.

Restricted access

Robert Robergs, Keith Hutchinson, Shonn Hendee, Sean Madden and Jason Siegler

The purpose of this study was to measure the recovery kinetics of pH and lactate for the conditions of pre-exercise acidosis, alkalosis, and placebo states. Twelve trained male cyclists completed 3 exercise trials (110% workload at VO2max), ingesting either 0.3 g/kg of NH4Cl (ACD), 0.2 g/kg of Na+HCO3 - and 0.2 g/kg of sodium citrate (ALK), or a placebo (calcium carbonate) (PLAC). Blood samples (heated dorsal hand vein) were drawn before, during, and after exercise. Exercise-induced acidosis was more severe in the ACD and PLAC trials (7.15 ± 0.06, 7.21 ± 0.07, 7.16 ± 0.06, P < 0.05, for ACD, ALK, PLAC, respectively). Recovery kinetics for blood pH and lactate, as assessed by the monoexponential slope constant, were not different between trials (0.057 ± 0.01, 0.050 ± 0.01, 0.080 ± 0.02, for ACD, ALK, PLAC, respectively). Complete recovery of blood pH from metabolic acidosis can take longer than 45 min. Such a recovery profile is nonlinear, with 50% recovery occurring in approximately 12 min. Complete recovery of blood lactate can take longer than 60 min, with 50% recovery occurring in approximately 30 min. Induced alkalosis decreases metabolic acidosis and improves pH recovery compared to acidodic and placebo conditions. Although blood pH and lactate are highly correlated during recovery from acidosis, they recover at significantly different rates.

Restricted access

James A. Betts, Milou Beelen, Keith A. Stokes, Wim H.M. Saris and Luc J.C. van Loon

Nocturnal endocrine responses to exercise performed in the evening and the potential role of nutrition are poorly understood. To gain novel insight, 10 healthy men ingested carbohydrate with (C+P) and without (C) protein in a randomized order and double-blind manner during 2 hr of interval cycling followed by resistancetype exercise and into early postexercise recovery. Blood samples were obtained hourly throughout 9 hr of postexercise overnight recovery for analysis of key hormones. Muscle samples were taken from the vastus lateralis before and after exercise and then again the next morning (7 a.m.) to calculate mixed-muscle protein fractional synthetic rate (FSR). Overnight plasma hormone concentrations were converted into overall responses (expressed as area under the concentration curve) and did not differ between treatments for either growth hormone (1,464 ± 257 vs. 1,432 ± 164 pg/ml · 540 min) or total testosterone (18.3 ± 1.2 vs. 17.9 ± 1.2 nmol/L · 540 min, C and C+P, respectively). In contrast, the overnight cortisol response was higher with C+P (102 ± 11 nmol/L · 540 min) than with C (81 ± 8 nmol/L · 540 min; p = .02). Mixed-muscle FSR did not differ between C and C+P during overnight recovery (0.062% ± 0.006% and 0.062% ± 0.009%/hr, respectively) and correlated significantly with the plasma total testosterone response (r = .7, p < .01). No correlations with FSR were apparent for the response of growth hormone (r = –.2, p = .4), cortisol (r = .1, p = .6), or the ratio of testosterone to cortisol (r = .2, p = .5). In conclusion, protein ingestion during and shortly after exercise does not modulate the endocrine response or muscle protein synthesis during overnight recovery.

Restricted access

George P. Elias, Victoria L. Wyckelsma, Matthew C. Varley, Michael J. McKenna and Robert J. Aughey

Purpose:

The efficacy of a single exposure to 14 min of contrast water therapy (CWT) or cold-water immersion (COLD) on recovery postmatch in elite professional footballers was investigated.

Method:

Twenty-four elite footballers participated in a match followed by 1 of 3 recovery interventions. Recovery was monitored for 48 h postmatch. Repeat-sprint ability (6 × 20-m), static and countermovement jump performance, perceived soreness, and fatigue were measured prematch and immediately, 24 h, and 48 h after the match. Soreness and fatigue were also measured 1 h postmatch. Postmatch, players were randomly assigned to complete passive recovery (PAS; n = 8), COLD (n = 8), or CWT (n = 8).

Results:

Immediately postmatch, all groups exhibited similar psychometric and performance decrements, which persisted for 48 h only in the PAS group. Repeatsprinting performance remained slower at 24 and 48 h for PAS (3.9% and 2.0%) and CWT (1.6% and 0.9%) but was restored by COLD (0.2% and 0.0%). Soreness after 48 h was most effectively attenuated by COLD (ES 0.59 ± 0.10) but remained elevated for CWT (ES 2.39 ± 0.29) and PAS (ES 4.01 ± 0.97). Similarly, COLD more successfully reduced fatigue after 48 h (ES 1.02 ± 0.72) than did CWT (ES 1.22 ± 0.38) and PAS (ES 1.91 ± 0.67). Declines in static and countermovement jump were ameliorated best by COLD.

Conclusions:

An elite professional football match results in prolonged physical and psychometric deficits for 48 h. COLD was more successful at restoring physical performance and psychometric measures than CWT, with PAS being the poorest.

Restricted access

François Bieuzen, Jeanick Brisswalter, Christopher Easthope, Fabrice Vercruyssen, Thierry Bernard and Christophe Hausswirth

Background:

Compression garments are increasingly popular in long-distance running events where they are used to limit cumulative fatigue and symptoms associated with mild exercise-induced muscle damage (EIMD). However, the effective benefits remain unclear.

Objective:

This study examined the effect of wearing compression stockings (CS) on EIMD indicators. Compression was applied during or after simulated trail races performed at competition pace in experienced off-road runners.

Methods:

Eleven highly trained male runners participated in 3 simulated trail races (15.6 km: uphill section 6.6 km, average gradient 13%, and downhill section 9.0 km, average gradient –9%) in a randomized crossover trial. The effect of wearing CS while running or during recovery was tested and compared with a control condition (ie, run and recovery without CS; non- CS). Indicators of muscle function, muscle damage (creatine kinase; CK), inflammation (interleukin-6; IL-6), and perceived muscle soreness were recorded at baseline (1 h before warm-up) and 1, 24, and 48 h after the run.

Results:

Perceived muscle soreness was likely to be lower when participants wore CS during trail running compared with the control condition (1 h postrun, 82% chance; 24 h postrun, 80% chance). A likely or possibly beneficial effect of wearing CS during running was also found for isometric peak torque at 1 h postrun (70% chance) and 24 h postrun (60% chance) and throughout the recovery period on countermovement jump, compared with non-CS. Possible, trivial, or unclear differences were observed for CK and IL-6 between all conditions.

Conclusion:

Wearing CS during simulated trail races mainly affects perceived leg soreness and muscle function. These benefits are visible very shortly after the start of the recovery period.

Restricted access

Anne Hecksteden, Werner Pitsch, Ross Julian, Mark Pfeiffer, Michael Kellmann, Alexander Ferrauti and Tim Meyer

Purpose:

Assessment of muscle recovery is essential for the daily fine-tuning of training load in competitive sports, but individual differences may limit the diagnostic accuracy of group-based reference ranges. This article reports an attempt to develop individualized reference ranges using a Bayesian approach comparable to that developed for the Athlete Biological Passport.

Methods:

Urea and creatine kinase (CK) were selected as indicators of muscle recovery. For each parameter, prior distributions and repeated-measures SDs were characterized based on data of 883 squad athletes (1758 data points, 1–8 per athlete, years 2013–2015). Equations for the individualization procedure were adapted from previous material to allow for discrimination of 2 physiological states (recovered vs nonrecovered). Evaluation of classificatory performance was carried out using data from 5 consecutive weekly microcycles in 14 elite junior swimmers and triathletes. Blood samples were collected every Monday (recovered) and Friday according to the repetitive weekly training schedule over 5 wk. On the group level, changes in muscle recovery could be confirmed by significant differences in urea and CK and validated questionnaires. Group-based reference ranges were derived from that same data set to avoid overestimating the potential benefit of individualization.

Results:

For CK, error rates were significantly lower with individualized classification (P vs group-based: test-pass error rate P = .008; test-fail error rate P < .001). For urea, numerical improvements in error rates failed to reach significance.

Conclusions:

Individualized reference ranges seem to be a promising tool to improve accuracy of monitoring muscle recovery. Investigating application to a larger panel of indicators is warranted.

Restricted access

Michael S. Green, Benjamin T. Corona, J. Andrew Doyle and Christopher P. Ingalls

This study examined the effects of carbohydrate (CHO), carbohydrate-protein (CHO+PRO), or placebo (PLA) beverages on recovery from novel eccentric exercise. Female participants performed 30 min of downhill treadmill running (–12% grade, 8.0 mph), followed by consumption of a CHO, CHO+PRO, or PLA beverage immediately, 30, and 60 min after exercise. CHO and CHO+PRO groups (n = 6 per group) consumed 1.2 g · kg body weight–1 · hr–1 CHO, with the CHO+PRO group consuming an additional 0.3 g · kg body weight–1 · hr–1 PRO. The PLA group (n = 6) received an isovolumetric noncaloric beverage. Maximal isometric quadriceps strength (QUAD), lower extremity muscle soreness (SOR), and serum creatine kinase (CK) were assessed preinjury (PRE) and immediately and 1, 2, and 3 d postinjury to assess exercise-induced muscle injury and rate of recovery. There was no effect of treatment on recovery of QUAD (p = .21), SOR (p = .56), or CK (p = .59). In all groups, QUAD was reduced compared with PRE by 20.6% ± 1.5%, 17.2% ± 2.3%, and 11.3% ± 2.3% immediately, 1, and 2 d postinjury, respectively (p < .05). SOR peaked at 2 d postinjury (PRE vs. 2 d, 3.1 ± 1.0 vs. 54.0 ± 4.8 mm, p < .01), and serum CK peaked 1 d postinjury (PRE vs. 1 d, 138 ± 47 vs. 757 ± 144 U/L, p < .01). In conclusion, consuming a CHO+PRO or CHO beverage immediately after novel eccentric exercise failed to enhance recovery of exercise-induced muscle injury differently than what was observed with a PLA drink.