Search Results

You are looking at 271 - 280 of 2,136 items for :

Clear All
Restricted access

Ryan F. Jones

Column-editor : Marjorie J. Albohm

Restricted access

Joanne L. Fallowfield, Clyde Williams and Rabindar Singh

Recovery from prolonged exercise involves both rehydration and replenishment of endogenous carbohydrate stores. The present study examined the influence of ingesting a carbohydrate-electrolyte (CE) solution following prolonged running, on exercise capacity 4 hr later. Twelve men and 4 women were divided into two matched groups, which were randomly assigned to either a control (P) or a carbohydrate (CHO) condition. Both groups ran at 70% of maximal oxygen uptake (VO2max) on a level treadmill for 90 min or until volitional fatigue (R,), and they ran at the same %VO2max to exhaustion 4 hr later to assess endurance capacity (R2). The CHO group ingested a 6.9% CE solution providing 1.0 g CHO · kg body weight−1 immediately post-R, and again 2 hr later. The P group ingested equal volumes of a placebo solution. Run times (mean ± SEM) for Rj did not differ between the groups (P 86.3 ± 3.8 min; CHO 87.5 ± 2.5 min). The CHO group ran 22.2 (±3.5) min longer than the P group during R2 (P 39.8 ± 6.1 min; CHO 62.0 ± 6.2 min) (p < .05). Thus, ingesting a 6.9% carbohydrate-electrolyte beverage following prolonged, constant-pace running improves endurance capacity 4 hr later.

Restricted access

Dieter Deprez, Joao Valente-dos-Santos, Manuel Coelho e Silva, Matthieu Lenoir, Renaat M. Philippaerts and Roel Vaeyens

Purpose:

To model the development of soccer-specific aerobic performance, assessed by the Yo-Yo Intermittent Recovery Test Level 1 in 162 elite pubertal soccer players, age 11–14 y at baseline.

Methods:

Longitudinal multilevel modeling analyses comprised predictors related to growth (chronological age, body size [height and weight] and composition [fat mass, fat-free mass]), and motor coordination [3 Körperkoordination Test für Kinder subtests: jumping sideways, moving sideways, backward balancing] and estimated biological-maturation groups (earliest [>percentile 33] and latest maturers [>percentile 66]).

Results:

The best-fitting model on soccer-specific aerobic performance could be expressed as –3639.76 + 369.86 × age + 21.38 × age2 + 9.12 × height – 29.04 × fat mass + 0.06 × backward balance. Maturity groups had a negligible effect on soccer-specific aerobic performance (–45.32 ± 66.28; P > .05).

Conclusion:

The current study showed that the development of aerobic performance in elite youth soccer is related to growth and muscularity and emphasized the importance of motor coordination in the talentidentification and -development process. Note that biological maturation was excluded from the model, which might endorse the homogeneity in estimated biological-maturation status in the current elite pubertal soccer sample.

Restricted access

Stephen H. Wong, Clyde Williams and Neville Adams

This randomized, double-blind study examined the effects of rehydration per se and rehydration plus carbohydrate (CHO) ingestion during recovery (REC) on subsequent endurance running capacity. Nine men ran at 70% V̇O2max on a level treadmill for 90 min (Tl) on two occasions, followed by a 4 hour REC and a further exhaustive run at the same speed (T2). During the first 3 hours of REC, subjects drank either a 6.9% CHO-electrolyte solution (CE) or a CHO- and electrolyte-free sweetened placebo (PL) every 30 min. Volumes prescribed were 200% of the fluid lost after Tl. but the actual volume of fluid ingested during the REC ranged from 113–200% and 88.5–200% of the body mass lost for the CE and PL trials (NS). However, positive fluid balance was found in both trials after REC. During T2. run time was 24.3 ± 4.4 min longer in the CE trial (69.3 ± 5.5 vs. 45.0 ± 4.2 min; p < .05). Higher blood glucose concentrations were observed throughout REC in the CE trial. These results suggest that ingesting a CHO-electrolyte solution is more effective in restoring endurance capacity compared to the same large volume of placebo, even though complete rehydration was achieved in both trials.

Restricted access

Victor H. de Freitas, Lucas A. Pereira, Eberton A. de Souza, Anthony S. Leicht, Maurizio Bertollo and Fábio Y. Nakamura

Purpose:

This study examined the sensitivity of maximal (Yo-Yo Intermittent Recovery [IR] 1 and 2) and submaximal (5’-5’) tests to identify training adaptations in futsal players along with the suitability of heart-rate (HR) and HR-variability (HRV) measures to identify these adaptations.

Methods:

Eleven male professional futsal players were assessed before (pretraining) and after (posttraining) a 5-wk period. Assessments included 5’-5’ and Yo-Yo IR1 and IR2 performances and HR and HRV at rest and during the IR and 5’-5’ tests. Magnitude-based-inference analyses examined the differences between pre- and posttraining, while relationships between changes in variables were determined via correlation.

Results:

Posttraining, Yo-Yo IR1 performance likely increased while Yo-Yo IR2 performance almost certainly increased. Submaximal HR during the Yo-Yo IR1 and Yo-Yo IR2 almost certainly and likely, respectively, decreased with training. HR during the 5’-5’ was very likely decreased, while HRV at rest and during the 5’-5’ was likely increased after training. Changes in both Yo-Yo IR performances were negatively correlated with changes in HR during the Yo-Yo IR1 test and positively correlated with the change in HRV during the 5’-5’.

Conclusions:

The current study has identified the Yo-Yo IR2 as more responsive for monitoring training-induced changes of futsal players than the Yo-Yo IR1. Changes in submaximal HR during the Yo-Yo IR and HRV during the 5’-5’ were highly sensitive to changes in maximal performance and are recommended for monitoring training. The 5’-5’ was recommended as a time-efficient method to assess training adaptations for futsal players.

Restricted access

Stephen Heung-Sang Wong and Yajun Chen

Purpose:

This study examined the rehydration achieved by drinking different beverages during a short-term recovery period (REC) after exercise-induced dehydration.

Methods:

Thirteen well-trained men (age 22.1 ± 3.3 yr, body mass 61.2 ± 9.1 kg, VO2max 64.9 ± 4.0 ml · kg−1 · min−1, maximum heart rate 198 ± 7 beats/min) ran for 60 min on 3 occasions on a level treadmill at 70% VO2max. All trials were performed in thermoneutral conditions (21 °C, 71% relative humidity) and were separated by at least 7 d. During 4 hr REC, the subjects consumed either a volume of a carbohydrate-electrolyte beverage (CE), lemon tea (LT), or distilled water (DW) equal to 150% of the body weight (BW) lost during the previous run. The fluid was consumed in 6 equal volumes at 30, 60, 90, 120, 150, and 180 min of REC.

Results:

After the completion of the 60-min run, the subjects lost ~2.0% of their preexercise BW in all trials, and no differences were observed in these BW changes between trials. At the end of REC, the greatest fraction of the retained drink occurred when the CE drink was consumed (CE vs. LT vs. DW: 52% ± 18% vs. 36% ± 15% vs. 30% ± 14%, p < .05). The CE drink also caused the least diuretic effect (CE vs. LT vs. DW: 638 ± 259 vs. 921 ± 323 vs. 915 ± 210 ml, p < .05) and produced the optimal restoration of plasma volume (CE vs. LT vs. DW: 11.2% ± 2.0% vs. –3.1% ± 1.8% vs. 0.2% ± 2.1%, p < .05).

Conclusion:

The results of this study suggest that CE drinks are more effective than DW or LT in restoring fluid balance during short-term REC after exercise-induced dehydration.

Restricted access

Martin Buchheit and Alireza Rabbani

The aim of the current study was to examine the relationship between performance of the Yo-Yo Intermittent Recovery Test Level 1 (Yo-YoIR1) and the 30–15 Intermittent Fitness Test (30-15IFT) and to compare the sensitivity of both tests to training. Fourteen young soccer players performed both tests before and after an 8-wk training intervention, which included 6 sessions/wk: 2 resistance training sessions, 2 high-intensity interval training sessions after technical training (4 sets of 3:30 min of generic running and small-sided games [4v4] during the first and second 4-wk periods, respectively [90–95% maximal HR], interspersed with 3 min at 60–70% maximal HR), and 2 tactical-only training sessions. There was a large correlation between 30-15IFT and Yo-YoIR1 (r = .75, 90% confidence limits [CL] 0.57;0.86). While within-test percentage changes suggested a greater sensitivity to training for the Yo-YoIR1 (+35%, 90%CL 24;45) than for the 30-15IFT (+7%; 4;10), these changes were similarly rated as almost certain (with chances for greater/similar/lower values after training of 100/0/0 for both tests) and moderate, ie, standardized difference, ES = +1.2 90%CL (0.9;1.5) for Yo-YoIR1 and ES = +1.1 (0.7;1.5) for 30-15IFT. The difference in the change between the 2 tests was clearly trivial (0/100/0, ES = –0.1, 90%CL –0.1;–0.1). Both tests might evaluate slightly different physical capacities, but their sensitivity to training is almost certainly similar. These results also highlight the importance of using standardized differences instead of percentage changes in performance to assess the actual training effect of an intervention.

Restricted access

Melitta A. McNarry, Joanne R. Welsman and Andrew M. Jones

The influence of training status on pulmonary VO2 recovery kinetics, and its interaction with maturity, has not been investigated in young girls. Sixteen prepubertal (Pre: trained (T, 11.4 ± 0.7 years), 8 untrained (UT, 11.5 ± 0.6 years)) and 8 pubertal (Pub: 8T, 14.2 ± 0.7 years; 8 UT, 14.5 ± 1.3 years) girls completed repeat transitions from heavy intensity exercise to a baseline of unloaded exercise, on both an upper and lower body ergometer. The VO2 recovery time constant was significantly shorter in the trained prepubertal and pubertal girls during both cycle (Pre: T, 26 ± 4 vs. UT, 32 ± 6; Pub: T, 28 ± 2 vs. UT, 35 ± 7 s; both p < .05) and upper body exercise (Pre: T, 26 ± 4 vs. UT, 35 ± 6; Pub: T, 30 ± 4 vs. UT, 42 ± 3 s; both p < .05). No interaction was evident between training status and maturity. These results demonstrate the sensitivity of VO2 recovery kinetics to training in young girls and challenge the notion of a “maturational threshold” in the influence of training status on the physiological responses to exercise and recovery.

Restricted access

Shuaijie Wang, Yiru Wang, Yi-Chung (Clive) Pai, Edward Wang and Tanvi Bhatt

the lower-level ground. Alternatively, upon balance loss, restabilizing the COM state by taking an effective recovery step and/or providing sufficient vertical limb support to retard and/or reverse hip descent could turn a fall into a nonfall outcome. 15 For both outcomes, the trailing limb lands

Restricted access

Lewis A. Gough, Steven Rimmer, Callum J. Osler and Matthew F. Higgins

This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (Wpeak) 256 ± 45 W, peak oxygen uptake (V̇O2peak) 46 ± 8 ml.kg-1.min-1) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg-1 body mass sodium chloride (NaCl) mixed with 4 ml.kg-1 tap water and 1 ml.kg-1 orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared with NaHCO3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [Bla-] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (p < .01) in both blood pH (+0.07 ± 0.02, d = 2.6, CI = 1.2, 3.7) and bicarbonate ion concentration [HCO3 -] (+6.8 ± 1.6 mmo.l-1, d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before TLIM2. It is likely both the acceleration of recovery, and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performance compared with the PLA condition.