Search Results

You are looking at 21 - 30 of 63 items for :

  • "body-mass loss" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Lewis J. James and Susan M. Shirreffs

Weight categorized athletes use a variety of techniques to induce rapid weight loss (RWL) in the days leading up to weigh in. This study examined the fluid and electrolyte balance responses to 24-hr fluid restriction (FR), energy restriction (ER) and fluid and energy restriction (F+ER) compared with a control trial (C), which are commonly used techniques to induce RWL in weight category sports. Twelve subjects (six male, six female) received adequate energy and water (C) intake, adequate energy and restricted water (~10% of C; FR) intake, restricted energy (~25% of C) and adequate water (ER) intake or restricted energy (~25% of C) and restricted (~10% of C) water intake (F+ER) in a randomized counterbalanced order. Subjects visited the laboratory at 0 hr, 12 hr, and 24 hr for blood and urine sample collection. Total body mass loss was 0.33% (C), 1.88% (FR), 1.97% (ER), and 2.44% (F+ER). Plasma volume was reduced at 24 hr during FR, ER, and F+ER, while serum osmolality was increased at 24 hr for FR and F+ER and was greater at 24 hr for FR compared with all other trials. Negative balances of sodium, potassium, and chloride developed during ER and F+ER but not during C and FR. These results demonstrate that 24 hr fluid and/or energy restriction significantly reduces body mass and plasma volume, but has a disparate effect on serum osmolality, resulting in hypertonic hypohydration during FR and isotonic hypohydration during ER. These findings might be explained by the difference in electrolyte balance between the trials.

Restricted access

Stephen A. Mears and Susan M. Shirreffs

Water intake occurs following a period of high-intensity intermittent exercise (HIIE) due to sensations of thirst yet this does not always appear to be caused by body water losses. Thus, the aim was to assess voluntary water intake following HIIE. Ten healthy males (22 ± 2 y, 75.6 ± 6.9 kg, VO2peak 57.3 ± 11.4 m·kg−1·min−1; mean± SD) completed two trials (7–14 d apart). Subjects sat for 30 min then completed an exercise period involving 2 min of rest followed by 1 min at 100% VO2peak repeated for 60 min (HIIE) or 60 min continuously at 33% VO2peak (LO). Subjects then sat for 60 min and were allowed ad libitum water intake. Body mass was measured at start and end of trials. Serum osmolality, blood lactate, and sodium concentrations, sensations of thirst and mouth dryness were measured at baseline, postexercise and after 5, 15, 30, and 60 min of recovery. Vasopressin concentration was measured at baseline, postexercise, 5 min, and 30 min. Body mass loss over the whole trial was similar (HIIE: 0.77 ± 0.50; LO: 0.85 ± 0.55%; p = .124). Sweat lost during exercise (0.78 ± 0.22 vs. 0.66 ± 0.26 L) and voluntary water intake during recovery (0.416 ± 0.299 vs. 0.294 ± 0.295 L; p < .05) were greater in HIIE. Serum osmolality (297 ± 3 vs. 288 ± 4mOsmol·kg−1), blood lactate (8.5 ± 2.7 vs. 0.7 ± 0.4 mmol·L−1), serum sodium (146 ± 1 vs. 143 ± 1 mmol·L−1) and vasopressin (9.91 ± 3.36 vs. 4.43 ± 0.86 pg·ml−1) concentrations were higher after HIIE (p < .05) and thirst (84 ± 7 vs. 60 ± 21) and mouth dryness (87 ± 7 vs. 64 ± 23) also tended to be higher (p = .060). Greater voluntary water intake after HIIE was mainly caused by increased sweat loss and the consequences of increased serum osmolality mainly resulting from higher blood lactate concentrations.

Restricted access

Janaka P. Gamage, Angela P. De Silva, Arjan K. Nalliah and Stuart D.R. Galloway

The aim of the current study was to assess the effects of dehydration on cricket specific motor skill performance among fast-bowlers, fielders, and batsmen playing in a hot and humid environment. 10 fast-bowlers, 12 fielders and 8 batsmen participated in two field trials conducted 7 days apart: a fluid provision trial (FP) and a fluid restriction trial (FR). Each trial consisted of a 2-hr standardized training session and pretraining and posttraining skill performance assessments. Bowling speed and accuracy (line and length), throwing speed and accuracy (overarm, sidearm and underarm) and timed running between wickets (1, 2, and 3 runs) was assessed pre to posttraining in each trial. Mass loss was 0.6 ± 0.3 kg (0.9 ± 0.5%) in FP, and 2.6 ± 0.5kg (3.7 ± 0.8%) in FR trials. Maintaining mass within 1% of initial values did not cause any significant skill performance decline. However, the dehydration on the FR trial induced a significant time and trial effect for bowling speed by 1.0 ± 0.8% reduction (0.3 ± 0.8% reduction in FP trial; p < .01) and 19.8 ± 17.3% reduction in bowling accuracy for line (3.6 ± 14.2% reduction in FP trial; p < .01), but no effect on bowling length. A significant decline was noted in the FR trial for throwing speed for overarm (6.6 ± 4.1%; p < .01; 1.6 ± 3.4% reduction in FP trial) and sidearm (4.1 ± 2.3%; p < .01; 0.6 ± 4.7% increase in FP trial) techniques, and for throwing accuracy for overarm (14.2 ± 16.3%; p < .01; 0.8 ± 24.2% increase in FP trial) and sidearm (22.3 ± 13.3%; p < .05; 3.2 ± 34.9% reduction in FP trial) techniques. Batsmen demonstrated significant performance drop in making three runs (0.8 ± 1.2% increase in time in FP trial and 2.2 ± 1.7% increase in time in FR trial; p < .01). Moderate-severe dehydration of 3.7% body mass loss significantly impairs motor skill performance among cricketers, particularly bowlers and fielders, playing in hot and humid conditions. Fluid ingestion strategies maintaining mass loss within 1% prevented a decline in skill performance.

Restricted access

Paola Rodriguez-Giustiniani and Stuart D.R. Galloway

evening in order to begin the dehydration process. After overnight dehydration and fasting, participants arrived at the laboratory at 08:00 a.m. They were first asked to empty their bladder and provide a urine sample. Nude body mass was measured, and the body mass loss required to attain a 2% loss, in

Restricted access

Emily C. Borden, William J. Kraemer, Bryant J. Walrod, Emily M. Post, Lydia K. Caldwell, Matthew K. Beeler, William H. DuPont, John Paul Anders, Emily R. Martini, Jeff S. Volek and Carl M. Maresh

For over 20 years, there have been concerns about the potential negative physiological effects of repeated body-mass losses over a wrestling season to “make weight” through a variety of methods including starvation, fluid restriction, and exercise. 1 – 3 In 1998, a study by Yankanich et al 1 was

Restricted access

Alexander S.D. Gamble, Jessica L. Bigg, Tyler F. Vermeulen, Stephanie M. Boville, Greg S. Eskedjian, Sebastian Jannas-Vela, Jamie Whitfield, Matthew S. Palmer and Lawrence L. Spriet

Fluid Intake, Sweat Loss, and Body Mass Loss of JR, AHL, and NHL Players During On-Ice Practices JR ( n  = 77) AHL ( n  = 60) NHL ( n  = 77) Urine specific gravity  All players 1.018 ± 0.007 1.019 ± 0.007 1.018 ± 0.008  Goalies 1.021 ± 0.006 1.019 ± 0.002 1.025 ± 0.006  Defensemen 1.015 ± 0.007 1

Restricted access

Paola Rodriguez-Giustiniani, Ian Rollo, Oliver C. Witard and Stuart D. R. Galloway

), we set out to control for many of these additional factors, that is, maintain body mass loss within 1%, adopt prematch feeding guidelines prior to an afternoon kickoff, assess outcomes in professional youth players, and distinguish between potential effects in dominant and nondominant feet. Therefore

Open access

Douglas J. Casa, Samuel N. Cheuvront, Stuart D. Galloway and Susan M. Shirreffs

between 1% and 4% dehydration ( Cheuvront et al., 2010 ; Gutiérrez et al., 2003 ; Hoffman et al., 1995 ; Watson et al., 2005 ) although a 6% body mass loss has been investigated when energy restriction has been combined with dehydration ( Kraemer et al., 2001 ; Viitasalo et al., 1987 ). Yet the

Restricted access

Julian A. Owen, Matthew B. Fortes, Saeed Ur Rahman, Mahdi Jibani, Neil P. Walsh and Samuel J. Oliver

body mass loss during the 48-hr trials was the reference standard in this study, we standardized energy intake and physical activity 24 hr before and during trials. Energy intake was calculated as the product of resting metabolic rate and an estimated physical activity factor. Resting metabolic rate

Restricted access

Jason D. Vescovi and Greig Watson

prevalence of players in various categories of relative body mass change following matches. These data show that a wide range of players experienced 1–2% reduction in body mass (up to 12), and an additional two to eight players experienced body mass loss of >−2%. Table 1 Variability of Usg and Body Mass