Search Results

You are looking at 21 - 30 of 74 items for :

  • "calorimetry" x
  • Sport and Exercise Science/Kinesiology x
  • Physical Education and Coaching x
Clear All
Restricted access

Hermann-J. Engels, John C. Wirth, Sueda Celik and Jodee L. Dorsey

This study assessed the influence of caffeine on metabolic and cardiovascular functions during sustained, light intensity cycling and at rest. Eight healthy, recreationally active adults participated in four randomly assigned, double-blind experimental trials of 60 min upright seated cycle exercise (30% VO2max) or equivalent rest with caffeine (5 mg ⋅ kg−1) or placebo consumed 60 min prior to data collection. Gas exchange was measured by open-circuit spirom-etry indirect calorimetry. Global blood flow was evaluated by thoracic impedance cardiography and arterial blood pressure by auscultation. A repeated measures ANOVA indicated that pretrial caffeine increased oxygen uptake and energy expenditure rate (p < 0.05) but did not change respiratory exchange ratio. Systolic, diastolic, and mean arterial blood pressure were elevated following caffeine intake (p < 0.05). Cardiac output, heart rate, stroke volume, and systemic vascular resistance were not significantly different between caffeine and placebo sessions. For each of the metabolic and hemodynamic variables examined, the effects of caffeine were similar during constant-load, light intensity cycling and at rest. These data illustrate that caffeine's mild thermogenic influence can be mediated without a major shift in substrate oxidation mixture. Caffeine at this dosage level alters cardiovascular dynamics by augmenting arterial blood pressure.

Restricted access

John S. Cuddy, Dustin R. Slivka, Walter S. Hailes, Charles L. Dumke and Brent C. Ruby

Purpose:

The purpose of this study was to determine the metabolic profile during the 2006 Ironman World Championship in Kailua-Kona, Hawaii.

Methods:

One recreational male triathlete completed the race in 10:40:16. Before the race, linear regression models were established from both laboratory and feld measures to estimate energy expenditure and substrate utilization. The subject was provided with an oral dose of 2H2 18O approximately 64 h before the race to calculate total energy expenditure (TEE) and water turnover with the doubly labeled water (DLW) technique. Body weight, blood sodium and hematocrit, and muscle glycogen (via muscle biopsy) were analyzed pre- and postrace.

Results:

The TEE from DLW and indirect calorimetry was similar: 37.3 MJ (8,926 kcal) and 37.8 MJ (9,029 kcal), respectively. Total body water turnover was 16.6 L, and body weight decreased 5.9 kg. Hematocrit increased from 46 to 51% PCV. Muscle glycogen decreased from 152 to 48 mmoL/kg wet weight pre- to postrace.

Conclusion:

These data demonstrate the unique physiological demands of the Ironman World Championship and should be considered by athletes and coaches to prepare sufficient nutritional and hydration plans.

Restricted access

Kristin L. Osterberg and Christopher L. Melby

This study determined the effect of an intense bout of resistive exercise on postexercise oxygen consumption, resting metabolic rate, and resting fat oxidation in young women (N = 7, ages 22-35). On the morning of Day 1, resting metabolic rate (RMR) was measured by indirect calorimetry. At 13:00 hr, preexercise resting oxygen consumption was measured followed by 100 min of resistive exercise. Postexercise oxygen consumption was then measured for a 3-hr recovery period. On the following morning (Day 2), RMR was once again measured in a fasted state at 07:00. Postexercise oxygen consumption remained elevated during the entire 3-hr postexercise recovery period compared to the pre-exercise baseline. Resting metabolic rate was increased by 4.2% (p < .05) from Day 1 (morning prior to exercise: 1,419 ± 58 kcal/24 hr) compared to Day 2 (16 hr following exercise: 1,479 ± 65 kcal/24 hr). Resting fat oxidation as determined by the respiratory exchange ratio was also significantly elevated on Day 2 compared to Day 1. These results indicate that among young women, acute strenuous resistance exercise of the nature used in this study is capable of producing modest but prolonged elevations of postexercise metabolic rate and possibly fat oxidation.

Restricted access

Mathieu L. Maltais, Karine Perreault, Alexandre Courchesne-Loyer, Jean-Christophe Lagacé, Razieh Barsalani and Isabelle J. Dionne

The decrease in resting energy expenditure (REE) and fat oxidation with aging is associated with an increase in fat mass (FM), and both could be prevented by exercise such as resistance training. Dairy consumption has also been shown to promote FM loss in different subpopulations and to be positively associated with fat oxidation. Therefore, we sought to determine whether resistance exercise combined with dairy supplementation could have an additive impact on FM and energy metabolism, especially in individuals with a deficit in muscle mass. Twenty-six older overweight sarcopenic men (65 ± 5 years old) were recruited for the study. They participated in 4 months of resistance exercise and were randomized into three groups for postexercise shakes (control, dairy, and nondairy isocaloric and isoprotein supplement with 375 ml and ~280 calories per shake). Body composition was measured by dual X-ray absorptiometry and REE by indirect calorimetry. Fasting glucose, insulin, leptin, inflammatory profile, and blood lipid profile were also measured. Significant decreases were observed with FM only in the dairy supplement group; no changes were observed for any other variables. To conclude, FM may decrease without changes in metabolic parameters during resistance training and dairy supplementation with no caloric restriction without having any impact on metabolic properties. More studies are warranted to explain this significant decrease in FM.

Restricted access

Jeanne F. Nichols, Hilary Aralis, Sonia Garcia Merino, Michelle T. Barrack, Lindsay Stalker-Fader and Mitchell J. Rauh

There is a growing need to accurately assess exercise energy expenditure (EEE) in athletic populations that may be at risk for health disorders because of an imbalance between energy intake and energy expenditure. The Actiheart combines heart rate and uniaxial accelerometry to estimate energy expenditure above rest. The authors’ purpose was to determine the utility of the Actiheart for predicting EEE in female adolescent runners (N = 39, age 15.7 ± 1.1 yr). EEE was measured by indirect calorimetry and predicted by the Actiheart during three 8-min stages of treadmill running at individualized velocities corresponding to each runner’s training, including recovery, tempo, and 5-km-race pace. Repeated-measures ANOVA with Bonferroni post hoc comparisons across the 3 running stages indicated that the Actiheart was sensitive to changes in intensity (p < .01), but accelerometer output tended to plateau at race pace. Pairwise comparisons of the mean difference between Actiheart- and criterion-measured EEE yielded values of 0.0436, 0.0539, and 0.0753 kcal · kg−1 · min−1 during recovery, tempo, and race pace, respectively (p < .0001). Bland–Altman plots indicated that the Actiheart consistently underestimated EEE except in 1 runner’s recovery bout. A linear mixed-model regression analysis with height as a covariate provided an improved EEE prediction model, with the overall standard error of the estimate for the 3 speeds reduced to 0.0101 kcal · kg−1 · min−1. Using the manufacturer’s equation that combines heart rate and uniaxial motion, the Actiheart may have limited use in accurately assessing EEE, and therefore energy availability, in young, female competitive runners.

Restricted access

Christopher L. Melby, Kristen L. Osterberg, Alyssa Resch, Brenda Davy, Susan Johnson and Kevin Davy

Thirteen physically active, eumenorrheic, normal-weight (BMI ≤ 25 kg/m2) females, aged 18–30 years, completed 4 experimental conditions, with the order based on a Latin Square Design: (a) CHO/Ex: moderate-intensity exer-· cise (65% V̇O2peak) with a net energy cost of ~500 kcals, during which time the subject consumed a carbohydrate beverage (45 g CHO) at specific time intervals; (b) CHO/NoEx: a period of time identical to (a) but with subjects consuming the carbohydrate while sitting quietly rather than exercising; (c) NoCHO/ Ex: same exercise protocol as condition (a) during which time subjects consumed a non-caloric placebo beverage; and (d) NoCHO/NoEx: same as the no-exercise condition (b) but with subjects consuming a non-caloric placebo beverage. Energy expenditure, and fat and carbohydrate oxidation rates for the entire exercise/sitting period plus a 90-min recovery period were determined by continuous indirect calorimetry. Following recovery, subjects ate ad libitum amounts of food from a buffet and were asked to record dietary intake during the remainder of the day. Total fat oxidation (exercise plus recovery) was attenuated by carbohydrate compared to placebo ingestion by only ~4.5 g. There was a trend (p = .08) for a carbohydrate effect on buffet energy intake such that the CHO/Ex and CHO/NoEx energy intakes were lower than the NoCHO/Ex and NoCHO/NoEx energy intakes, respectively (mean for CHO conditions: 683 kcal; NoCHO conditions: 777 kcal). Average total energy intake (buffet plus remainder of the day) was significantly lower (p < .05) following the conditions when carbohydrate was consumed (CHO/Ex = 1470 kcal; CHO/NoEx = 1285 kcal) compared to the noncaloric placebo (NoCHO/Ex =1767 kcal; NoCHO/ NoEx = 1660 kcal). In conclusion, in young women engaging in regular exercise, ingestion of 45 g of carbohydrate during exercise only modestly suppresses total fat oxidation during exercise. Furthermore, the ingestion of carbohydrate with or without exercise resulted in a lower energy intake for the remainder of the day

Restricted access

Steven Gastinger, Guillaume Nicolas, Anthony Sorel, Hamid Sefati and Jacques Prioux

The aim of this article was to compare 2 portable devices (a heart-rate monitor and an electromagnetic-coil system) that evaluate 2 different physiological parameters—heart rate (HR) and ventilation (VE)—with the objective of estimating energy expenditure (EE). The authors set out to prove that VE is a more pertinent setting than HR to estimate EE during light to moderate activities (sitting and standing at rest and walking at 4, 5, and 6 km/hr). Eleven healthy men were recruited to take part in this study (27.6 ± 5.4 yr, 73.7 ± 9.7 kg). The authors determined the relationships between HR and EE and between VE and EE during light to moderate activities. They compared EE measured by indirect calorimetry (EEREF) with EE estimated by HR monitor (EEHR) and EE estimated by electromagnetic coils (EEMAG) in upright sitting and standing positions and during walking exercises. They compared EEREF with EEHR and EEMAG. The results showed no significant difference between the values of EEREF and EEMAG. However, they showed several significant differences between the values of EEREF and EEHR (for standing at rest and walking at 5 and 6 km/hr). These results showed that the electromagnetic-coil system seems to be more accurate than the HR monitor to estimate EE at rest and during exercise. Taking into consideration these results, it would be interesting to associate the parameters VE and HR to estimate EE. Furthermore, a new version of the electromagnetic-coil device was recently developed and provides the possibility to perform measurement under daily life conditions.

Restricted access

James Cameron Morehen, Warren Jeremy Bradley, Jon Clarke, Craig Twist, Catherine Hambly, John Roger Speakman, James Peter Morton and Graeme Leonard Close

Rugby League is a high-intensity collision sport competed over 80 min. Training loads are monitored to maximize recovery and assist in the design of nutritional strategies although no data are available on the total energy expenditure (TEE) of players. We therefore assessed resting metabolic rate (RMR) and TEE in six Super League players over 2 consecutive weeks in-season including one game per week. Fasted RMR was assessed followed by a baseline urine sample before oral administration of a bolus dose of hydrogen (deuterium 2H) and oxygen (18O) stable isotopes in the form of water (2H2 18O). Every 24 hr thereafter, players provided urine for analysis of TEE via DLW method. Individual training load was quantified using session rating of perceived exertion (sRPE) and data were analyzed using magnitude-based inferences. There were unclear differences in RMR between forwards and backs (7.7 ± 0.5 cf. 8.0 ± 0.3 MJ, respectively). Indirect calorimetry produced RMR values most likely lower than predictive equations (7.9 ± 0.4 cf. 9.2 ± 0.4 MJ, respectively). A most likely increase in TEE from Week 1 to 2 was observed (17.9 ± 2.1 cf. 24.2 ± 3.4 MJ) explained by a most likelyincrease in weekly sRPE (432 ± 19 cf. 555 ± 22 AU), respectively. The difference in TEE between forward and backs was unclear (21.6 ± 4.2 cf. 20.5 ± 4.9 MJ, respectively). We report greater TEE than previously reported in rugby that could be explained by the ability of DLW to account for all match and training-related activities that contributes to TEE.

Restricted access

Jean M. Nyakayiru, Kristin L. Jonvik, Philippe J.M. Pinckaers, Joan Senden, Luc J.C. van Loon and Lex B. Verdijk

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

Restricted access

Eric T. Trexler, Katie R. Hirsch, Bill I. Campbell and Abbie E. Smith-Ryan

The purpose of the current study was to evaluate changes in body composition, metabolic rate, and hormones during postcompetition recovery. Data were collected from natural physique athletes (7 male/8 female) within one week before (T1) competition, within one week after (T2), and 4–6 weeks after (T3) competition. Measures included body composition (fat mass [FM] and lean mass [LM] from ultrasongraphy), resting metabolic rate (RMR; indirect calorimetry), and salivary leptin, testosterone, cortisol, ghrelin, and insulin. Total body water (TBW; bioelectrical impedance spectroscopy) was measured at T1 and T2 in a subsample (n = 8) of athletes. Significant (p < .05) changes were observed for weight (T1 = 65.4 ± 12.2 kg, T2 = 67.4 ± 12.6, T3 = 69.3 ± 13.4; T3 > T2 > T1), LM (T1 = 57.6 ± 13.9 kg, T2 = 59.4 ± 14.2, T3 = 59.3 ± 14.2; T2 and T3 > T1), and FM (T1 = 7.7 ± 4.4 kg, T2 = 8.0 ± 4.4, T3 = 10.0 ± 6.2; T3 > T1 and T2). TBW increased from T1 to T2 (Δ=1.9 ± 1.3 L, p < .01). RMR increased from baseline (1612 ± 266 kcal/day; 92.0% of predicted) to T2 (1881 ± 329, 105.3%; p < .01) and T3 (1778 ± 257, 99.6%; p < .001). Cortisol was higher (p < .05) at T2 (0.41 ± 0.31 μg/dL) than T1 (0.34 ± 0.31) and T3 (0.35 ± 0.27). Male testosterone at T3 (186.6 ± 41.3 pg/mL) was greater than T2 (148.0 ± 44.6, p = .04). RMR changes were associated (p ≤ .05) with change in body fat percent (ΔBF%; r = .59) and T3 protein intake (r= .60); male testosterone changes were inversely associated (p≤ .05) with ΔBF%, ΔFM, and Δweight (r=-0.81–-0.88). TBW increased within days of competition. Precompetition RMR suppression appeared to be variable and markedly reversed by overfeeding, and reverted toward normal levels following competition. RMR and male testosterone increased while FM was preferentially gained 4–6 weeks postcompetition.