Search Results

You are looking at 21 - 30 of 310 items for :

  • "interval training" x
Clear All
Restricted access

Nick Dobbin, Jamie Highton, Samantha L. Moss and Craig Twist

strategy to maintain key performance characteristics could be particularly beneficial. Low-volume sprint interval training (SIT) might be appealing during the season, where players can be exposed to maximal-intensity activity through a reduced workload that also enables coaches to address technical and

Restricted access

Dean Dudley, Nathan Weaver and John Cairney

Nations Educational, Scientific and Cultural Organization, 2015 ). How to Bridge the Gap High-intensity interval training (HIIT) is emerging as a possible solution to the time constraints teachers’ face with PE instruction ( Costigan, Eather, Plotnikoff, Taaffe, & Lubans, 2015 ; Costigan, Eather

Restricted access

Kyle R. Barnes, Will G. Hopkins, Michael R. McGuigan and Andrew E. Kilding

Purpose:

Runners use uphill running as a movement-specific form of resistance training to enhance performance. However, the optimal parameters for prescribing intervals are unknown. The authors adopted a dose-response design to investigate the effects of various uphill interval-training programs on physiological and performance measures.

Methods:

Twenty well-trained runners performed an incremental treadmill test to determine aerobic and biomechanical measures, a series of jumps on a force plate to determine neuromuscular measures, and a 5-km time trial. Runners were then randomly assigned to 1 of 5 uphill interval-training programs. After 6 wk all tests were repeated. To identify the optimal training program for each measure, each runner’s percentage change was modeled as a quadratic function of the rank order of the intensity of training. Uncertainty in the optimal training and in the corresponding effect on the given measure was estimated as 90% confidence limits using bootstrapping.

Results:

There was no clear optimum for time-trial performance, and the mean improvement over all intensities was 2.0% (confidence limits ±0.6%). The highest intensity was clearly optimal for running economy (improvement of 2.4% ± 1.4%) and for all neuromuscular measures, whereas other aerobic measures were optimal near the middle intensity. There were no consistent optima for biomechanical measures.

Conclusions:

These findings support anecdotal reports for incorporating uphill interval training in the training programs of distance runners to improve physiological parameters relevant to running performance. Until more data are obtained, runners can assume that any form of high-intensity uphill interval training will benefit 5-km time-trial performance.

Restricted access

James J. Hoffmann Jr, Jacob P. Reed, Keith Leiting, Chieh-Ying Chiang and Michael H. Stone

Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

Restricted access

Robert W. Pettitt

The use of personal records (PRs) for running different distances may be used to derive critical speed (CS) and the finite capacity for running speeds exceeding CS (D′). Using CS and D′, individualized speed-time and distance-time relationships can be modeled (ie, time limits associated with running at a given speed or a given distance can be derived via linear regression with a high degree of accuracy). The running 3-min all-out exercise test (3 MT) has emerged as a method for estimating CS and D′ on a large group of athletes in a single visit. Such a procedure is useful when PRs are not readily available (eg, team-sport athletes). This article reviews how to administer and interpret the running 3 MT, how CS and D′ can inform racing strategy, and how CS and D′ can be used to prescribe and evaluate high-intensity interval training (HIIT). Directions for deriving HIIT bouts using either fixed distances or fixed speeds are provided along with CS dose-responses to short-term HIIT programs.

Restricted access

Matthew W. Driller, John R. Gregory, Andrew D. Williams and James W. Fell

Recent research has reported performance improvements after chronic NaHCO3 ingestion in conjunction with high-intensity interval training (HIT) in moderately trained athletes. The purpose of the current study was to determine the effects of altering plasma H+ concentration during HIT through NaHCO3 ingestion over 4 wk (2 HIT sessions/wk) in 12 Australian representative rowers (M ± SD; age 22 ± 3 yr, mass 76.4 ± 4.2 kg, VO2peak 65.50 ± 2.74 ml · kg−1 · min−1). Baseline testing included a 2,000-m time trial and an incremental exercise test. After baseline testing, rowers were allocated to either a chronic NaHCO3 (ALK) or placebo (PLA) group. Starting 90 min before each HIT session, subjects ingested a 0.3-g/kg body mass dose of NaHCO3 or a placebo substance. Fingertip blood samples were taken throughout the study to analyze bicarbonate and pH levels. The ALK group did not produce any additional improvements in 2,000-m rowing performance time compared with PLA (p > .05). Magnitude-based inferential analysis indicated an unclear or trivial effect on 2,000-m power, 2,000-m time, peak power output, and power at 4 mmol/L lactate threshold in the ALK group compared with the PLA group. Although there was no difference between groups, during the study there was a significant mean (± SD) 2,000-m power improvement in both the ALK and PLA groups of 17.8 ± 14.5 and 15.2 ± 18.3 W, respectively. In conclusion, despite overall improvements in rowing performance after 4 wk of HIT, the addition of chronic NaHCO3 supplementation during the training period did not significantly enhance performance further.

Restricted access

Matthew W. Driller, James W. Fell, John R. Gregory, Cecilia M. Shing and Andrew D. Williams

Purpose:

Several recent studies have reported substantial performance and physiological gains in well-trained endurance runners, swimmers, and cyclists following a period of high-intensity interval training (HIT). The aim of the current study was to compare traditional rowing training (CT) to HIT in well-trained rowers.

Methods:

Subjects included 5 male and 5 female rowers (mean ± SD; age = 19 ± 2 y; height = 176 ± 8 cm; mass = 73.7 ± 9.8 kg; Vo2peak = 4.37 ± 1.08 L·min−1). Baseline testing included a 2000-m time trial and a maximal exercise test to determine Vo2peak, 4-min all-out power, and 4 mmol·L−1 blood lactate threshold. Following baseline testing, rowers were randomly allocated to HIT or CT, which they performed seven times over a 4-wk period. The HIT involved 8 × 2.5-min intervals at 90% of the velocity maintained at Vo2peak, with individual recoveries returning to 70% of the subjects’ maximal heart rate between intervals. The CT intensity consisted of workloads corresponding to 2 and 3 mmol·L−1 blood lactate concentrations. On completion of HIT or CT, rowers repeated the testing performed at baseline and were then allocated to the alternative training program and completed a crossover trial.

Results:

HIT produced greater improvements in 2000-m time (1.9 ± 0.9%; mean ± SD), 2000-m power (5.8 ± 3.0%), and relative Vo2peak (7.0 ± 6.4%) than CT.

Conclusion:

Four weeks of HIT improves 2000-m time-trial performance and relative Vo2peak in competitive rowers, more than a traditional approach.

Restricted access

Dietmar Wallner, Helmut Simi, Gerhard Tschakert and Peter Hofmann

Purpose:

To analyze the acute physiological response to aerobic short-interval training (AESIT) at various high-intensity running speeds. A minor anaerobic glycolytic energy supply was aimed to mimic the characteristics of slow continuous runs.

Methods:

Eight trained male runners (maximal oxygen uptake [VO2max] 55.5 ± 3.3 mL · kg−1 · min−1) performed an incremental treadmill exercise test (increments: 0.75 km · h−1 · min−1). Two lactate turn points (LTP1, LTP2) were determined. Subsequently, 3 randomly assigned AESIT sessions with high-intensity running-speed intervals were performed at speeds close to the speed (v) at VO2max (vVO2max) to create mean intensities of 50%, 55%, and 60% of vLTP1. AESIT sessions lasted 30 min and consisted of 10-s work phases, alternated by 20-s passive recovery phases.

Results:

To produce mean velocities of 50%, 55%, and 60% of vLTP1, running speeds were calculated as 18.6 ± 0.7 km/h (93.4% vVO2max), 20.2 ± 0.6 km/h (101.9% vVO2max), and 22.3 ± 0.7 km/h (111.0% vVO2max), which gave a mean blood lactate concentration (La) of 1.09 ± 0.31 mmol/L, 1.57 ± 0.52 mmol/L, and 2.09 ± 0.99 mmol/L, respectively. La at 50% of vLTP1 was not significantly different from La at vLTP1 (P = .8894). Mean VO2 was found at 54.0%, 58.5%, and 64.0% of VO2max, while at the end of the sessions VO2 rose to 71.1%, 80.4%, and 85.6% of VO2max, respectively.

Conclusion:

The results showed that AESIT with 10-s work phases alternating with 20 s of passive rest and a running speed close to vVO2max gave a systemic aerobic metabolic profile similar to slow continuous runs.

Restricted access

Ana Sousa, João Paulo Vilas-Boas, Ricardo J. Fernandes and Pedro Figueiredo

Purpose:

To establish appropriate work intensity for interval training that would elicit maximal oxygen uptake (VO2max) for well-trained swimmers.

Methods:

Twelve male competitive swimmers completed an incremental protocol to determine the minimum velocity at VO2max (νVO2max) and, in randomized order, 3 square-wave exercises from rest to 95%, 100%, and 105% of νVO2max. Temporal aspects of the VO2 response were examined in these latter.

Results:

Swimming at 105% of νVO2max took less (P < .04) absolute time to achieve 90%, 95%, and 100% of VO2max intensities (35.0 ± 7.7, 58.3 ± 15.9, 58.3 ± 19.3 s) compared with 95% (72.1 ± 34.3, 106.7 ± 43.9, 151.1 ± 52.4 s) and 100% (55.8 ± 24.5, 84.2 ± 35.4, 95.6 ± 29.8 s) of VO2max. However, swimming at 95% of νVO2max resulted in longer absolute time (P < .001) at or above the desired intensities (90%: 268.3 ± 72.5 s; 95%: 233.8 ± 74.3 s; 100%: 173.6 ± 78.2 s) and more relative time at or above 95% of VO2max than 105% of νVO2max (68.6% ± 13.5% vs 55.3% ± 11.5%, P < .03), and at or above 100% of VO2max than 100% and 105% of νVO2max (52.7% ± 16.3% vs 28.2% ± 10.5% and 34.0% ± 11.3%, P < .001). At 60 s of effort, swimmers achieved 85.8% ± 11.2%, 88.3% ± 5.9%, and 94.7% ± 5.5% of the VO2max when swimming at 95%, 100%, and 105% of νVO2max, respectively.

Conclusions:

When training to elicit VO2max, using higher swimming intensities will promote a faster VO2 response but a shorter time spent above these intensities. However, lower intensities allow maintaining the desired response for a longer period of time. Moreover, using the 60-s time period seem to be a more adequate stimulus than shorter ones (~30-s), especially when performed at 105% of νVO2max intensity.

Restricted access

Helen G. Hanstock, Andrew D. Govus, Thomas B. Stenqvist, Anna K. Melin, Øystein Sylta and Monica K. Torstveit

HIT (4 × 4 min) , despite lower heart rates (HRs), blood lactate concentrations, ratings of perceived exertion (RPE), and a less pronounced steroid hormone response. 3 However, it is unclear how different interval training prescriptions influence athletes’ health and immune status. Training