Search Results

You are looking at 21 - 30 of 182 items for :

  • "post-exercise" x
Clear All
Restricted access

Steven R. McAnulty, Lisa S. McAnulty, Jason D. Morrow, David C. Nieman, John T. Owens and Cristin M. Carper

This study compared effects of carbohydrate (CHO) and rest on oxidative stress during exercise. Cyclists (N = 12) completed 4 randomized trials at 64% Wattsmax under 2 conditions (continuous cycling for 2 h [C] and cycling with 3-min rest every 10 min for 2.6 h [R]). Subjects cycled under each condition while receiving 6% CHO and placebo (PLA). CHO and PLA were given pre exercise (12 mL/kg) and during exercise (4 mL·kg−1·15 min−1). Blood was collected pre exercise, post exercise, and 1 h post exercise and assayed for F2-isoprostanes, hydroperoxides (LH), nitrite, antioxidant capacity, glucose, insulin, cortisol, and epinephrine. F2-isoprostanes and LH were lower in CHO. Glucose, cortisol, and epinephrine exhibited significant effects, with post exercise levels of glucose higher and cortisol and epinephrine lower in CHO during the R condition. This pattern was identical in the C condition (21). Oxidative stress during cycling was unaffected by use of short rest intervals but was diminished by CHO.

Restricted access

Ryan D. Andrews, David A. MacLean and Steven E. Riechman

Variability in protein consumption may influence muscle mass changes induced by resistance exercise training (RET). We sought to administer a post-exercise protein supplement and determine if daily protein intake variability affected variability in muscle mass gains. Men (N = 22) and women (N = 30) ranging in age from 60 to 69 y participated in a 12-wk RET program. At each RET session, participants consumed a post-exercise drink (0.4 g/kg lean mass protein). RET resulted in significant increases in lean mass (1.1 ±1.5 kg), similar between sexes (P > 0.05). Variability in mean daily protein intake was not associated with change in lean mass (r < 0.10, P > 0.05). The group with the highest protein intake (1.35 g · kg−1 · d−1, n = 8) had similar (P > 0.05) changes in lean mass as the group with the lowest daily protein intake (0.72 g · kg−1 · d−1, n = 9). These data suggest that variability in total daily protein intake does not affect variability in lean mass gains with RET in the context of post-exercise protein supplementation.

Restricted access

G.W. Davison, C.M. Hughes and R.A. Bell

The purpose of this investigation was to determine the effects of antioxidant supplementation on DNA damage following exercise. Fourteen subjects were randomly assigned to one of two groups and required to ingest either antioxidants (400 mg α-lipoic acid, 200 mg co-enzyme Q10, 12 mg manganese, 600 mg vitamin C, 800 mg N-acetyl cysteine, 400 μg selenium, and 400 IU α-tocopherol per day) or placebos for 7 d. Exercise increased DNA damage, PS, FRAP, and LDH (P < 0.05), but not selectively between groups. LDH and PS concentration decreased 1 h post-exercise (P < 0.05), while LH concentration decreased 1 h post-exercise in the antioxidant group only (P < 0.05). The antioxidant group had a higher concentration of LH (P < 0.05), perhaps due to a selective difference between groups post-exercise (P < 0.05). The main findings of this investigation demonstrate that exhaustive aerobic exercise induces DNA damage, while anti-oxidant supplementation does not protect against damage.

Restricted access

Rob Duffield, Monique King and Melissa Skein

Purpose:

This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise.

Methods:

Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22°C or 33°C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min post exercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured.

Results:

No differences (P = 0.73 to 0.95) in peak power during repeated sprints were present between conditions. Post exercise MVC was reduced (P < .05) in both conditions and a moderate effect size (d = 0.60) indicated a slower percentage MVC recovered by 60 min in the heat (83 ± 10 vs 74 ± 11% recovered). Both heart rate and core temperature were significantly higher (P < .05) during recovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min post exercise in the heat.

Conclusions:

The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.

Restricted access

Graham McGinnis, Brian Kliszczewiscz, Matthew Barberio, Christopher Ballmann, Bridget Peters, Dustin Slivka, Charles Dumke, John Cuddy, Walter Hailes, Brent Ruby and John Quindry

Hypoxic exercise is characterized by workloads decrements. Because exercise and high altitude independently elicit redox perturbations, the study purpose was to examine hypoxic and normoxic steady-state exercise on blood oxidative stress. Active males (n = 11) completed graded cycle ergometry in normoxic (975 m) and hypoxic (3,000 m) simulated environments before programing subsequent matched intensity or workload steady-state trials. In a randomized counterbalanced crossover design, participants completed three 60-min exercise bouts to investigate the effects of hypoxia and exercise intensity on blood oxidative stress. Exercise conditions were paired as such; 60% normoxic VO2peak performed in a normoxic environment (normoxic intensity-normoxic environment, NI-NE), 60% hypoxic VO2peak performed in a normoxic environment (HI-NE), and 60% hypoxic VO2peak performed in a hypoxic environment (HI-HE). Blood plasma samples drawn pre (Pre), 0 (Post), 2 (2HR) and 4 (4HR) hr post exercise were analyzed for oxidative stress biomarkers including ferric reducing ability of plasma (FRAP), trolox equivalent antioxidant capacity (TEAC), lipid hydroperoxides (LOOH) and protein carbonyls (PCs). Repeated-measures ANOVA were performed, a priori significance of p ≤ .05. Oxygen saturation during the HI-HE trial was lower than NI-NE and HI-NE (p < .05). A Time × Trial interaction was present for LOOH (p = .013). In the HI-HE trial, LOOH were elevated for all time points post while PC (time; p = .001) decreased post exercise. As evidenced by the decrease in absolute workload during hypoxic VO2peak and LOOH increased during HI-HE versus normoxic exercise of equal absolute (HI-NE) and relative (NI-NE) intensities. Results suggest acute hypoxia elicits work decrements associated with post exercise oxidative stress.

Restricted access

Lee N. Burkett, Jack Chisum, Jack Pierce, Kent Pomeroy, Jim Fisher and Margie Martin

Twenty spinal-cord-injured subjects (4 quadriplegics and 16 paraplegics) were maximally stress tested on the Arizona State University wheelchair ergometer. Physiological data for each individual were collected as follows: (a) blood flow in the left leg by a photoelectric plethysmograph before exercise, during exercise, and postexercise, and (b) blood lactates before exercise and post-exercise. Eleven subjects had increased leg blood flow and vasodilation during exercise, but vasoconstriction postexercise. The lactate readings, in comparison to able-bodied individuals, were higher at rest but lower at maximal exercise.

Restricted access

Ian M. Wilcock, John B. Cronin and Wayne A. Hing

Purpose:

To assess the effect that post exercise immersion in water has on subsequent exercise performance.

Methods:

A literary search and review of water-immersion and performance studies was conducted.

Results:

Seven articles were examined. In 2, significant benefits to performance were observed. Those 2 articles revealed a small to large effect on jump performance and isometric strength.

Practical Application and Conclusions:

It is possible that water immersion might improve recovery from plyometric or muscle-damaging exercise. Such a statement needs to be verified, however, because of the scarcity of research on water immersion as a recovery strategy.

Restricted access

Alexander J. Koch, Jeffrey A. Potteiger, Marcia A. Chan, Stephen H. Benedict and Bruce B. Frey

The effect of carbohydrate supplementation (CHO) on the lymphocyte response to acute resistance exercise was examined in 10 resistance-trained males. Subjects completed a randomized double-blind protocol with sessions separated by 14 days. The exercise session consisted of a high intensity, short rest interval squat workout. Subjects consumed 1.0 g · kg body mass−1 CHO or an equal volume of placebo (PLC) 10 min prior to and 10 min following exercise. Blood was collected at rest (REST), immediately post exercise (POST), and at 1.5 hours and 4.0 hours of recovery, and analyzed for plasma glucose, serum cortisol, leukocyte subsets, and phytohemagglutinin (PHA)-stimulated lymphocyte proliferation. A significant Treatment × Time effect was observed for lymphocyte proliferation between CHO and PLC, but post hoc analyses revealed no between-treatment differences at any post-exercise time point. Lymphocyte proliferation was significantly depressed below REST at POST (−39.2% for PLC, −25.7% for CHO). Significant fluctuations in leukocyte subset trafficking were observed for both treatments at POST, 1.5 hours, and 4.0 hours. Plasma glucose was significantly increased POST in CHO compared to PLC. Cortisol was significantly increased from REST to POST in both treatments. These data support a minimal effect of carbohydrate ingestion on the lymphocyte response to high-intensity resistance exercise.

Restricted access

Luc J.C. van Loon

Protein, protein hydrolysates, and amino acids have become popular ingredients in sports nutrition. The use of protein, protein hydrolysates, and amino acid mixtures has multiple applications when aiming to improve post exercise recovery. After exhaustive endurance-type exercise, muscle glycogen repletion is the most important factor determining the time needed to recover. Coingestion of relatively small amounts of protein and/or amino acids with carbohydrate can be used to augment postprandial insulin secretion and accelerate muscle glycogen synthesis rates. Furthermore, it has been well established that ingesting protein, protein hydrolysates, and amino acid can stimulate protein synthesis and inhibit protein breakdown and, as such, improve net muscle protein balance after resistance- or endurance-type exercise. The latter has been suggested to lead to a more effective adaptive response to each successive exercise bout. To augment net muscle protein accretion, athletes involved in resistance-type exercise generally ingest both protein and carbohydrate during post exercise recovery. However, carbohydrate ingestion after resistance-type exercise does not seem to be warranted to further stimulate muscle protein synthesis or improve whole-body protein balance when ample protein has already been ingested. Because resistance-type exercise is also associated with a substantial reduction in muscle glycogen content, it would be preferred to coingest some carbohydrate when aiming to accelerate glycogen repletion. More research is warranted to assess the impact of ingesting different proteins, protein hydrolysates, and/or amino acids on muscle protein accretion after exercise.

Restricted access

Douglas Paddon-Jones, Andrew Keech and David Jenkins

Purpose:

We examined the effects of short-term β-hydroxy-β-methylbutyrate (HMB) supplementation on symptoms of muscle damage following an acute bout of eccentric exercise.

Methods:

Non-resistance trained subjects were randomly assigned to a HMB supplement group (HMB, 40mg/kg body weight/day, n = 8) or placebo group (CON, n = 9). Supplementation commenced 6 days prior to a bout of 24 maximal isokinetic eccentric contractions of the elbow flexors and continued throughout post-testing. Muscle soreness, upper arm girth, and torque measures were assessed pre-exercise, 15 min post-exercise, and 1,2,3, 4,7, and 10 days post-exercise.

Results:

No pre-test differences between HMB and CON groups were identified, and both performed a similar amount of eccentric work during the main eccentric exercise bout (p > .05). HMB supplementation had no effect on swelling, muscle soreness, or torque following the damaging eccentric exercise bout (p > .05).

Conclusion:

Compared to a placebo condition, short-term supplementation with 40mg/kg body weight/day of HMB had no beneficial effect on a range of symptoms associated with eccentric muscle damage. If HMB can produce an ergogenic response, a longer pre-exercise supplementation period may be necessary.