Search Results

You are looking at 21 - 30 of 393 items for :

Clear All
Restricted access

Kosuke Fujita, Masatoshi Nakamura, Hiroki Umegaki, Takuya Kobayashi, Satoru Nishishita, Hiroki Tanaka, Satoko Ibuki and Noriaki Ichihashi

studies, 1 – 3 , 9 however, used joint ROM as an index of muscle flexibility, which is known to be affected by psychological factors, such as pain and stretch tolerance. 11 Recently, measurement of muscle tendon unit stiffness during passive movement has been shown to be a preferred index of muscle

Restricted access

Alan Barr and David Hawkins

An anatomical database was constructed containing three-dimensional geometric representations of the structures comprising the lower extremity. The database was constructed by digitizing 100 high-resolution digital photographic images supplied from the National Library of Medicine’s Visual Human Male (VHM) project. These images were taken of sequential transverse cross-sectional slices of the leg. Slices were located 1 cm apart between a location approximately 3 mm below the superior aspect of the ilium and approximately 2 mm below the distal end of the fibula. Image Tool Software (v. 2.0) was used to manually digitize the perimeters of muscles, tendons, and bones of the pelvis, thigh, and shank from the right leg of the VHM. Additionally, the perimeter of the leg and the inner aspect of the superficial fat layer were digitized. The pelvis was digitized as a hemi-pelvis. Tissue perimeters were characterized using between 10 and 151 nodes within each slice; the number of nodes varied depending on the tissue’s size. Transverse cross-sectional slice number, structure identification, node number, and the two-dimensional coordinates of each node were stored in a data file. The information contained in this file is unique and provides a database that researchers can use to investigate questions related to tissue anatomy and movement mechanics that cannot be considered using existing musculoskeletal data sets.

Restricted access

Akinori Nagano, Senshi Fukashiro and Taku Komura

Contribution of series elasticity of the human mm. triceps surae in cyclic heel-raise exercise (similar to hopping but the feet do not leave the floor) was examined via computer modeling and simulation. A two-dimensional skeletal model of the human body was constructed. Upright posture was maintained throughout the simulation to prevent the model from falling. A mathematical representation of the mm. triceps surae was implemented in the skeletal model. The muscle was activated by the neural activation input signal with a time resolution of 0.050 sec. Cyclic heel-raise exercises of cycle duration ranging from 0.300 sec to 0.900 sec, corresponding to the motion frequency of 200 to 66.7 cycles/min, were generated using an optimization approach. The goal of the numerical optimization was to generate cyclic motions with as much range of motion as possible. As a result, realistic heel-raise motions were generated with the range of motion between 0.0023 m (cycle duration = 0.300 sec) and 0.0414 m (cycle duration = 0.900 sec). It was found that contribution of the series elasticity in positive mechanical work output of the muscle-tendon complex during the pushoff phase (from the lowest position to the termination of a cycle) increased as motion frequency increased (3% at 66.7 cycles/min to 47% at 200 cycles/min). Relatively higher muscle activation was found during the downward moving phase when the motion frequency was higher. These tendencies are consistent with the findings reported in preceding studies involving experimental animals as well as human participants. It is suggested that series elasticity plays an integral role in the generation of cyclic human motions.

Open access

Alireza Esmaeili, Andrew M. Stewart, William G. Hopkins, George P. Elias and Robert J. Aughey


Detrimental changes in tendon structure increase the risk of tendinopathies. The aim of this study was to investigate the influence of individual internal and external training loads and leg dominance on changes in the Achilles and patellar tendon structure.


The internal structure of the Achilles and patellar tendons of both limbs of 26 elite Australian footballers was assessed using ultrasound tissue characterization at the beginning and the end of an 18-wk preseason. Linear-regression analysis was used to estimate the effects of training load on changes in the proportion of aligned and intact tendon bundles for each side. Standardization and magnitude-based inferences were used to interpret the findings.


Possibly to very likely small increases in the proportion of aligned and intact tendon bundles occurred in the dominant Achilles (initial value 81.1%; change, ±90% confidence limits 1.6%, ±1.0%), nondominant Achilles (80.8%; 0.9%, ±1.0%), dominant patellar (75.8%; 1.5%, ±1.5%), and nondominant patellar (76.8%; 2.7%, ±1.4%) tendons. Measures of training load had inconsistent effects on changes in tendon structure; eg, there were possibly to likely small positive effects on the structure of the nondominant Achilles tendon, likely small negative effects on the dominant Achilles tendon, and predominantly no clear effects on the patellar tendons.


The small and inconsistent effects of training load are indicative of the role of recovery between tendon-overloading (training) sessions and the multivariate nature of the tendon response to load, with leg dominance a possible influencing factor.

Restricted access

Florian Fath, Anthony J. Blazevich, Charlie M. Waugh, Stuart C. Miller and Thomas Korff

The muscle-tendon moment arm is an important input parameter for musculoskeletal models. Moment arms change as a function of joint angle and contraction state and depend on the method being employed. The overall purpose was to gain insights into the interactive effects of joint angle, contraction state and method on the Achilles tendon moment arm using the center of rotation (COR) and the tendon excursion method (TE). Achilles tendon moment arms were obtained at rest (TErest, CORrest) and during a maximum voluntary contraction (CORMVC) at four angles. We found strong correlations between TErest and CORMVC for all angles (.72 ≤ r ≤ .93) with Achilles tendon moment arms using CORMVC being 33–36% greater than those obtained from TErest. The relationship between Achilles tendon moment arms and angle was similar across both methods and both levels of muscular contraction. Finally, Achilles tendon moment arms for CORMVC were 1–8% greater than for CORrest.

Restricted access

Rebekah D. Alcock, Gregory C. Shaw, Nicolin Tee, Marijke Welvaert and Louise M. Burke

), serves as a key tensile element within connective and structural tissues such as muscles, ligaments, tendons, and bone, due to cross-linking within its triple-helical structure ( Kadler et al., 2007 ). Although in its infancy, developing research suggests that it may be possible to nutritionally support

Restricted access

Melissa R. Lachowitzer, Anne Ranes and Gary T. Yamaguchi

In order to create a flexible model of the foot for dynamic musculoskeletal models, anthropometric data combined with geometric information describing the intrinsic musculature are needed. In this study, the left feet of two male and two female cadavers were dissected to expose the intrinsic musculotendon pathways. Three-dimensional coordinates of bony landmarks, tendon origins, insertions, and via points were digitized to submillimeter accuracy. Muscle architectural parameters were also measured, including volume, weight, and pennation angle and sarcomere, fascicle, and free tendon lengths. Optimal muscle fascicle lengths, pennation angles at optimal length, physiological cross-sectional areas (PCSA), and tendon slack lengths were calculated from the directly measured values. Fascicle length and pennation angle varied greatly within each subject. Average fascicle lengths normalized by optimal fascicle length varied between 0.73 and 1.25, with 75% of the formalin-preserved muscles being found in a shortened state. The muscle volume and PCSA also had a large variability within subjects but less variation between subjects. The ratio of tendon slack length to optimal fascicle length was found to vary between 1.05 and 9.56. Using this data, a deformable model of the foot can now be created. It is envisioned that deformable feet will significantly improve

Restricted access

Sharon J. Dixon and David G. Kerwin

This study investigated the influence of heel lift interventions on the loading of the Achilles tendon for heel-toe runners. It was hypothesized that the peak Achilles tendon force and peak rate of loading would be reduced by the increase in heel lift, and that the peak Achilles tendon force would occur significantly later in stance. Achilles tendon forces were determined by calculating sagittal-plane ankle joint moments using inverse-dynamics techniques and dividing these moments by Achilles tendon moment arm lengths. Methods for estimating Achilles tendon moment arm length using skin markers were justified via MRI data for one participant. Seven participants underwent running trials under three heel lift conditions: zero, 7.5-mm, and 15-mm heel lift. Average magnitude and occurrence time of peak Achilles tendon force and peak rate of loading were determined for each condition over the 7 participants. Despite group reductions in peak Achilles tendon force and peak rate of loading for the increased heel lift conditions, statistical analysis (ANOVA) revealed no significant differences for these variables, p > 0.05. Individual participant observations highlighted varied responses to heel lift; both increases and decreases in peak Achilles tendon force were observed. For the group data, the time of peak impact force occurred significantly later in the 15-mm heel lift condition than in the zero heel lift, p < 0.05. It is suggested that the success of increased heel lift in treating Achilles tendon injury may be due to a later occurrence of peak Achilles tendon force in response to this intervention, reducing Achilles tendon average rate of loading. In addition, the individuality of Achilles tendon peak force changes with heel lift intervention highlights the need for individual participant analysis.

Restricted access

Michael F. Joseph, Katherine Histen, Julia Arntsen, Lauren L’Hereux, Carmine Defeo, Derek Lockwood, Todd Scheer and Craig R. Denegar


Achilles tendons (ATs) adapt to increased loading generated by long-term adoption of a minimalist shoe running style. There may be difference in the chronology and extent of adaptation between the sexes.


To learn the chronology of AT adaptations in female and male runners who transitioned to a minimalist running style through a planned, progressive 12-wk transition program.


Prospective cohort study of well-trained, traditionally shod runners who transitioned to minimalist shoe running.


Repeated laboratory assessment at baseline and 3, 12, and 24 wk after initiating transition program.


Fifteen women and 7 men (of 29 enrolled) completed the study.

Main Outcome Measures:

The authors used diagnostic ultrasound and isokinetic dynamometry to generate a force elongation curve and its derivatives at each time point.


Greater adaptations were observed in men than in women, with men generating more force and having greater increases in CSA, stiffness, and Young’s modulus and less elongation after 12 wk of training.


Men demonstrated changes in AT properties that were consistent with increased loading of the triceps surae during exercise. The women demonstrated far smaller changes. Further investigation is warranted to understand when adaptations may occur in women and the implications of altered AT mechanical properties for performance and injury risk.

Restricted access

Michelle A. Sandrey


Tendons have biomechanical properties based on collaborative remodeling of all their cells through normal lysis and synthesis. This review assesses factors that affect the healing response and presents solutions for rehabilitating acute and chronic tendon injuries.

Data Sources:

MEDLINE (1970–2002) and SPORTDiscus (1970–2002). Key words searched were tendon, tendinitis, tendinosis, tendinopathy, rehabilitation, ultrasound, NSAIDs, exercise, mobilization, aging, immobilization, and healing.

Data Synthesis:

The biomechanical roles tendons play change throughout one’s lifetime and are influenced by maturation and aging, injury and healing, immobilization, exercise, medications, and therapeutic modalities. Suggestions from animal, case, and clinical studies are varied but provide solutions in the treatment of acute and chronic tendon injuries.

Conclusions and Recommendations:

All factors that affect the tendon structure should be considered in a rehabilitation program. Therapeutic exercise, medications, or therapeutic modalities should never be used as a stand-alone therapy.