Search Results

You are looking at 21 - 30 of 73 items for :

  • "urine-specific gravity" x
Clear All
Restricted access

Nora R. Decher, Douglas J. Casa, Susan W. Yeargin, Matthew S. Ganio, Michelle L. Levreault, Catie L. Dann, Camille T. James, Megan A. McCaffrey, Caitlin B. O’Connor and Scott W. Brown

Purpose:

To assess the hydration status and level of hydration knowledge of youths at summer sports camps.

Methods:

Sixty-seven active youths, 57 males (mean ± SD, 12 ± 2 y, 136 ± 16 cm, 50.6 ± 21.1 kg) and 10 females (13 ± 2 y, 153 ± 8 cm, 45.2 ± 9.0 kg) participated in 4 d of sports camp. Hydration status was assessed before the first practice (AM) and after the second practice (PM). Participants completed suriveys assessing hydration knowledge (HAQ) and hydration habits on day 3 and a self-assessment (EQ#1).

Results:

Mean AM urine specific gravity (USG) and urine osmolality (Uosm) scores ranged from minimal to significant dehydration across 4 d, even when temperatures were mild. Correlations between hydration indices and EQ#1, ranging from 0.11 to −0.51, were statistically significant (P < .05), indicating that subjects recognized when they were doing a good or bad job hydrating. HAQ did not correlate strongly with hydration indices suggesting other impediments to hydration. Thirst correlated negatively with EQ#1 (from −0.29 to −0.60).

Conclusion:

Hydration at summer sports camp is a concern and special efforts need to be made to help youths develop hydration strategies.

Restricted access

Jason P. Brandenburg and Michael Gaetz

This study determined the fluid balance of elite female basketball players before and during competition. Before and during 2 international games, 17 national-level players (age 24.2 ± 3 yr, height 180.5 ± 6 cm, mass 78.8 ± 8 kg) were assessed. Fluid-balance assessment included pregame hydration level as determined by urine specific gravity (USG), change in body mass during the game, ad libitum intake of water or sports drink, and estimated sweat losses. Mean (± SD) USG before Game 1 was 1.005 ± 0.002 and before Game 2 USG equaled 1.010 ± 0.005. Players lost an average of 0.7% ± 0.8% and 0.6% ± 0.6% of their body mass during Games 1 and 2, respectively. In each game, 3 players experienced a fluid deficit >1% of body mass, and 1 other, a fluid deficit >2%. Sweat losses in both games, from the beginning of the warm-up to the conclusion of the game (~125 min with average playing time 16–17 min), were approximately 1.99 ± 0.75 L. Fluid intake in Game 1 and Game 2 equaled 77.8% ± 32% and 78.0% ± 21% of sweat losses, respectively. Most players were hydrated before each game and did not become meaningfully dehydrated during the game. It is possible that the players who experienced the highest levels of dehydration also experienced some degree of playing impairment, and the negative relationship between change in body mass and shooting percentage in Game 2 provides some support for this notion.

Restricted access

Lawrence E. Armstrong, Carl M. Maresh, John W. Castellani, Michael F. Bergeron, Robert W. Kenefick, Kent E. LaGasse and Deborah Riebe

Athletes and researchers could benefit from a simple and universally accepted technique to determine whether humans are well-hydrated, euhydrated, or hypohydrated. Two laboratory studies (A, B) and one field study (C) were conducted to determine if urine color (Ucol) indicates hydration status accurately and to clarify the interchangeability of Ucol, urine osmolality (Uosm), and urine specific gravity (Usg) in research. Ucol, Uosm, and Usg were not significantly correlated with plasma osmolality, plasma sodium, or hemato-crit. This suggested that these hematologic measurements are not as sensitive to mild hypohydration (between days) as the selected urinary indices are. When the data from A, B, and C were combined, Ucol was strongly correlated with Uhg and U„sm. It was concluded that (a) Ucol may be used in athletic/industrial settings or field studies, where close estimates of Usg or Uosm are acceptable, but should not be utilized in laboratories where greater precision and accuracy are required, and (b) Uosm and Usg may be used interchangeably to determine hydration status.

Restricted access

Stacie L. Wing-Gaia, Andrew W. Subudhi and Eldon W. Askew

The purpose of this study was to assess the effects of purified oxygenated water on exercise performance under hypoxic conditions. Nine recreational male cyclists (age = 26.6 ± 5.2 y, weight = 87.6 ± 19.5 kg, VO2peak = 46.5 ± 5.9 mL · kg−1 · min−1) completed two 600 kJ cycling time trials under hypoxic conditions (FIO2 = 13.6% O2, Pbar = 641 mmHg) separated by 2 wk. Trials were completed following 3 d ingestion of 35 mL · kg−1 · d−1 of control (CON) or experimental (EXP) water. Time to completion, heart rate (HR), rate of perceived exertion (RPE), pulse oximetry (SaO2), blood gases (PcO2 and PcCO2), and lactate were measured during the trials. Hydration was assessed with pre- and post-exercise body weight and 24-h urine specific gravity. Performance, hydration, and blood oxygenation were unaffected by EXP water. Results of this study suggest that purified oxygenated water does not improve exercise performance in moderately active males.

Restricted access

Lawrence E. Armstrong, Amy C. Pumerantz, Melissa W. Roti, Daniel A. Judelson, Greig Watson, Joao C. Dias, Bülent Sökmen, Douglas J. Casa, Carl M. Maresh, Harris Lieberman and Mark Kellogg

This investigation determined if 3 levels of controlled caffeine consumption affected fluid-electrolyte balance and renal function differently. Healthy males (mean ± standard deviation; age, 21.6 ± 3.3 y) consumed 3 mg caffeine · kg−1 · d−1 on days 1 to 6 (equilibration phase). On days 7 to 11 (treatment phase), subjects consumed either 0 mg (C0; placebo; n = 20), 3 mg (C3; n = 20), or 6 mg (C6; n = 19) caffeine · kg−1 · d−1 in capsules, with no other dietary caffeine intake. The following variables were unaffected (P > 0.05) by different caffeine doses on days 1, 3, 6, 9, and 11 and were within normal clinical ranges: body mass, urineosmolality, urine specific gravity, urine color, 24-h urine volume, 24-h Na+ and K+ excretion, 24-h creatinine, blood urea nitrogen, serum Na+ and K+, serum osmolality, hematocrit, and total plasma protein. Therefore, C0, C3, and C6 exhibited no evidence of hypohydration. These findings question the widely accepted notion that caffeine consumption acts chronically as a diuretic.

Restricted access

J. Luke Pryor, Evan C. Johnson, Jeffery Del Favero, Andrew Monteleone, Lawrence E. Armstrong and Nancy R. Rodriguez

Postexercise protein and sodium supplementation may aid recovery and rehydration. Preserved beef provides protein and contains high quantities of sodium that may alter performance related variables in runners. The purpose of this study was to determine the effects of consuming a commercial beef product postexercise on sodium and water balance. A secondary objective was to characterize effects of the supplementation protocols on hydration, blood pressure, body mass, and running economy. Eight trained males (age = 22 ± 3 y, V̇O2max = 66.4 ± 4.2 ml·kg-1·min-1) completed three identical weeks of run training (6 run·wk-1, 45 ± 6 min·run-1, 74 ± 5% HRR). After exercise, subjects consumed either, a beef nutritional supplement (beef jerky; [B]), a standard recovery drink (SRD), or SRD+B in a randomized counterbalanced design. Hydration status was assessed via urinary biomarkers and body mass. No main effects of treatment were observed for 24 hr urine volume (SRD, 1.7 ± 0.5; B, 1.8 ± 0.6; SRD+B, 1.4 ± 0.4 L·d-1), urine specific gravity (1.016 ± 0.005, 1.018 ± 0.006, 1.017 ± 0.006) or body mass (68.4 ± 8.2, 68.3 ± 7.7, 68.2 ± 8.1 kg). No main effect of treatment existed for sodium intake—loss (-713 ± 1486; -973 ± 1123; -980 ± 1220 mg·d-1). Mean arterial pressure (81.0 ± 4.6, 81.1 ± 7.3, 83.8 ± 5.4 mm Hg) and average exercise running economy (V̇O2: SRD, 47.9 ± 3.2; B, 47.2 ± 2.6; SRD+B, 46.2 ± 3.4 ml·kg-1·min-1) was not affected. Urinary sodium excretion accounted for the daily sodium intake due to the beef nutritional supplement. Findings suggest the commercial beef snack is a viable recovery supplement following endurance exercise without concern for hydration status, performance decrements, or cardiovascular consequences.

Restricted access

Bjoern Geesmann, Joachim Mester and Karsten Koehler

Athletes competing in ultra-endurance events are advised to meet energy requirements, to supply appropriate amounts of carbohydrates (CHO), and to be adequately hydrated before and during exercise. In practice, these recommendations may not be followed because of satiety, gastrointestinal discomfort, and fatigue. The purpose of the study was to assess energy balance, macronutrient intake and hydration status before and during a 1,230-km bike marathon. A group of 14 well-trained participants (VO2max: 63.2 ± 3.3 ml/kg/min) completed the marathon after 42:47 hr. Ad libitum food and fluid intake were monitored throughout the event. Energy expenditure (EE) was derived from power output and urine and blood markers were collected before the start, after 310, 618, and 921 km, after the finish, and 12 hr after the finish. Energy intake (EI; 19,749 ± 4,502 kcal) was lower than EE (25,303 ± 2,436 kcal) in 12 of 14 athletes. EI and CHO intake (average: 57.1 ± 17.7 g/hr) decreased significantly after km 618 (p < .05). Participants ingested on average 392 ± 85 ml/hr of fluid, but fluid intake decreased after km 618 (p < .05). Hydration appeared suboptimal before the start (urine specific gravity: 1.022 ± 0.010 g/ml) but did not change significantly throughout the event. The results show that participants failed to maintain in energy balance and that CHO and fluid intake dropped below recommended values during the second half of the bike marathon. Individual strategies to overcome satiety and fatigue may be necessary to improve eating and drinking behavior during prolonged ultra-endurance exercise.

Restricted access

Ben Desbrow, Katelyn Barnes, Caroline Young, Greg R. Cox and Chris Irwin

Immediate postexercise access to fruit/fluid via a recovery “station” is a common feature of mass participation sporting events. Yet little evidence exists examining their impact on subsequent dietary intake. The aim of this study was to determine if access to fruit/water/sports drinks within a recovery station significantly alters dietary and fluid intakes in the immediate postexercise period and influences hydration status the next morning. 127 (79 males) healthy participants (M ± SD, age = 22.5 ± 3.5y, body mass (BM) = 73 ± 13kg) completed two self-paced morning 10km runs separated by 1 week. Immediately following the first run, participants were randomly assigned to enter (or not) the recovery station for 30min. All participants completed the alternate recovery option the following week. Participants recorded BM before and after exercise and measured Urine Specific Gravity (USG) before running and again the following morning. For both trial days, participants also completed 24h food and fluid records via a food diary that included photographs. Paired-sample t tests were used to assess differences in hydration and dietary outcome variables (Recovery vs. No Recovery). No difference in preexercise USG or BM change from exercise were observed between treatments (p’s > .05). Attending the recovery zone resulted in a greater total daily fluid (Recovery = 3.37 ± 1.46L, No Recovery = 3.16 ± 1.32L, p = .009) and fruit intake (Recovery = 2.37 ± 1.76 servings, No Recovery = 1.55 ± 1.61 servings, p > .001), but had no influence on daily total energy (Recovery = 10.15 ± 4.2MJ, No Recovery = 10.15 ± 3.9MJ), or macronutrient intakes (p > .05). Next morning USG values were not different between treatments (Recovery = 1.018 ± 0.007, No Recovery = 1.019 ± 0.009, p > .05). Recovery stations provide an opportunity to modify dietary intake which promote positive lifestyle behaviors in recreational athletes.

Restricted access

Lindsay A. Ellis, Brandon A. Yates, Amy L. McKenzie, Colleen X. Muñoz, Douglas J. Casa and Lawrence E. Armstrong

Urine color (Ucol) as a hydration assessment tool provides practicality, ease of use, and correlates moderately to strongly with urine specific gravity (Usg) and urine osmolality (Uosm). Indicative of daily fluid turnover, along with solute and urochrome excretion in 24-hr samples, Ucol may also reflect dietary composition. Thus, the purpose of this investigation was to determine the efficacy of Ucol as a hydration status biomarker after nutritional supplementation with beetroot (880 mg), vitamin C (1000 mg), and riboflavin (200 mg). Twenty males (Mean ± SD; age, 21 ± 2 y; body mass, 82.12 ± 15.58 kg; height, 1.77 ± 0.06 m) consumed a standardized breakfast and collected all urine voids on one control day (CON) and 1 day after consuming a standardized breakfast and a randomized and double-blinded supplement (SUP) over 3 weeks. Participants replicated exercise and diet for one day before CON, and throughout CON and SUP. Ucol, Usg, Uosm, and urine volume were measured in all 24-hr samples, and Ucol and Usg were measured in all single samples. Ucol was a significant predictor of single sample Usg after all supplements (p < .05). Interestingly, 24-hr Ucol was not a significant predictor of 24-h Usg and Uosm after riboflavin supplementation (p = .20, p = .21). Further, there was a significant difference between CON and SUP 24-h Ucol only after riboflavin supplementation (p < .05). In conclusion, this investigation suggests that users of the UCC (urine color chart) should consider riboflavin supplementation when classifying hydration status and use a combination of urinary biomarkers (e.g., Usg and Ucol), both acutely and over 24 hr.

Restricted access

Mary Caitlin Stevenson Wilcoxson, Samantha Louise Johnson, Veronika Pribyslavska, James Mathew Green and Eric Kyle O’Neal

Runners are unlikely to consume fluid during training bouts increasing the importance of recovery rehydration efforts. This study assessed urine specific gravity (USG) responses following runs in the heat with different recovery fluid intake volumes. Thirteen male runners completed 3 evening running sessions resulting in approximately 2,200 ± 300 ml of sweat loss (3.1 ± 0.4% body mass) followed by a standardized dinner and breakfast. Beverage fluid intake (pre/postbreakfast) equaled 1,565/2,093 ml (low; L), 2,065/2,593 ml (moderate; M) and 2,565/3,356 mL (high; H). Voids were collected in separate containers. Increased urine output resulted in no differences (p > .05) in absolute mean fluid retention for waking or first postbreakfast voids. Night void averages excluding the first void postrun (1.025 ± 0.008; 1.013 ± 0.008; 1.006 ± 0.003), first morning (1.024 ± 0.004; 1.015 ± 0.005; 1.014 ± 0.005), and postbreakfast (1.022 ± 0.007; 1.014 ± 0.007; 1.008 ± 0.003) USG were higher (p < .05) for L versus M and H respectively and more clearly differentiated fluid intake volume between L and M than color or thirst sensation. Waking (r = -0.66) and postbreakfast (r = -0.71) USG were both significantly correlated (p < .001) with fluid replacement percentage, but not absolute fluid retention. Fluid intake M was reported as most similar to normal consumption (5.6 ± 1.0 on 0–10 scale) after breakfast and equaled 122 ± 16% of sweat losses. Retention data suggests consumption above this level is not warranted or actually practiced by most runners drinking ad libitum, but that periodic prerun USG assessment may be useful for coaches to detect runners that habitually consume low levels of fluids between training bouts in warm seasons.