Search Results

You are looking at 31 - 40 of 68 items for :

  • "free fatty acids" x
Clear All
Restricted access

Kevin J. Cole, David L. Costill, Raymond D. Starling, Bret H. Goodpaster, Scott W. Trappe and William J. Fink

The purpose of this investigation was to determine the effect of caffeine ingestion on work output at various levels of perceived exertion during 30 min of isokinetie variable-resistance cycling exercise. Ten subjects completed six trials 1 hr after consuming either 6 mg · kg−1 caffeine (3 trials) or a placebo (3 trials). During each trial the subjects cycled at what they perceived to be a rating of 9 on the Borg rating of perceived exertion scale for the first 10 min, a rating of 12 for the next 10 min, and a rating of 15 for the final 10 min. Total work performed during the caffeine trials averaged 277.8 ± 26.1 kJ, whereas the mean total work during the placebo trials was 246.7 ± 21.5 kJ (p < .05). Blood glycerol and free fatty acid levels increased over time to a significantly greater degree in the caffeine trials than in the placebo trials (p < .05). However, there were no significant differences between conditions in respiratory exchange ratio. These data suggest that caffeine may play an ergogenic role in exercise performance by altering both neural perception of effort and substrate availability.

Restricted access

Jonathan P. Little, Philip D. Chilibeck, Dawn Ciona, Scott Forbes, Huw Rees, Albert Vandenberg and Gordon A. Zello

Consuming carbohydrate-rich meals before continuous endurance exercise improves performance, yet few studies have evaluated the ideal preexercise meal for high-intensity intermittent exercise, which is characteristic of many team sports. The authors’ purpose was to investigate the effects of low- and high-glycemic-index (GI) meals on metabolism and performance during high-intensity, intermittent exercise. Sixteen male participants completed three 90-min high-intensity intermittent running trials in a single-blinded random order, separated by ~7 d, while fasted (control) and 2 hr after ingesting an isoenergetic low-GI (lentil), or high-GI (potato and egg white) preexercise meal. Serum free fatty acids were higher and insulin lower throughout exercise in the fasted condition (p < .05), but there were no differences in blood glucose during exercise between conditions. Distance covered on a repeated-sprint test at the end of exercise was significantly greater in the low-GI and high-GI conditions than in the control (p < .05). Rating of perceived exertion was lower in the low-GI condition than in the control (p = .01). In a subsample of 5 participants, muscle glycogen availability was greater in the low- and high-GI conditions versus fasted control before the repeated-sprint test (p < .05), with no differences between low and high GI. When exogenous carbohydrates are not provided during exercise both low- and high-GI preexercise meals improve high-intensity, intermittent exercise performance, probably by increasing the availability of muscle glycogen. However, the GI does not influence markers of substrate oxidation during high-intensity, intermittent exercise.

Restricted access

Ya Jun Chen, Stephen H. Wong, Chun Kwok Wong, Ching Wan Lam, Ya Jun Huang and Parco M. Siu

This study examined the effect of ingesting 3 isocaloric meals with different glycemic indices (GI) and glycemic loads (GL) 2 hr before exercise on metabolic responses and endurance running performance. Eight male runners completed 3 trials in a randomized order, separated by at least 7 days. Carbohydrate (CHO) content (%), GI, and GL were, respectively, 65%, 79, and 82 for the high-GI/high-GL meal (H-H); 65%, 40, and 42 for the low-GI/low-GL meal (L-L); and 36%, 78, and 44 for the high-GI/low-GL meal (H-L). Each trial consisted of a 1-hr run at 70% VO2max, followed by a 10-km performance run. Low-GL diets (H-L and L-L) were found to induce smaller metabolic changes during the postprandial period and during exercise, which were characterized by a lower CHO oxidation in the 2 trials (p < .05) and a concomitant, higher glycerol and free-fatty-acid concentration in the H-L trial (p < .05). There was no difference, however, in time to complete the preloaded 10-km performance run between trials. This suggests that the GL of the preexercise meal has an important role in determining subsequent metabolic responses.

Restricted access

Stephen H.S Wong, Oi Won Chan, Ya Jun Chen, Heng Long Hu, Ching Wan Lam and Pak Kwong Chung

Purpose:

This study examined the effect of consuming carbohydrate- (CHO) electrolyte solution on running performance after different-glycemic-index (GI) meals.

Methods:

Nine men completed 3 trials in a randomized counterbalanced order, with trials separated by at least 7 days. Two hours before the run after an overnight fast, each participant consumed a high-GI (GI = 83) or low-GI (GI = 36) CHO meal or low-energy sugar-free Jell-O (GI = 0, control). The 2 isocaloric GI meals provided 1.5 g available CHO/kg body mass. During each trial, 2 ml/kg body mass of a 6.6% CHO-electrolyte solution was provided immediately before exercise and every 2.5 km after the start of running. Each trial consisted of a 21-km performance run on a level treadmill. The participants were required to run at 70% VO2max during the first 5 km of the run. They then completed the remaining 16 km as fast as possible.

Results:

There was no difference in the time to complete the 21-km run (high-GI vs. low-GI vs. control: 91.1 ± 2.0 vs. 91.8 ± 2.2 vs. 92.9 ± 2.0 min, n.s.). There were no differences in total CHO and fat oxidation throughout the trials, despite differences in preexercise blood glucose, serum insulin, and serum free-fatty-acid concentrations.

Conclusion:

When a CHO-electrolyte solution is consumed during a 21-km run, the GI of the preexercise CHO meal makes no difference in running performance.

Restricted access

Kathleen Woolf, Wendy K. Bidwell and Amanda G. Carlson

The study examined caffeine (5 mg/kg body weight) vs. placebo during anaerobic exercise. Eighteen male athletes (24.1 ± 5.8 yr; BMI 26.4 ± 2.2 kg/m2) completed a leg press, chest press, and Wingate test. During the caffeine trial, more total weight was lifted with the chest press, and a greater peak power was obtained during the Wingate test. No differences were observed between treatments for the leg press and average power, minimum power, and power drop (Wingate test). There was a significant treatment main effect found for postexercise glucose and insulin concentrations; higher concentrations were found in the caffeine trial. A significant interaction effect (treatment and time) was found for cortisol and glucose concentrations; both increased with caffeine and decreased with placebo. Postexercise systolic blood pressure was significantly higher during the caffeine trial. No differences were found between treatments for serum free-fatty-acid concentrations, plasma lactate concentrations, serum cortisol concentrations, heart rate, and rating of perceived exertion. Thus, a moderate dose of caffeine resulted in more total weight lifted for the chest press and a greater peak power attained during the Wingate test in competitive athletes.

Restricted access

Stavros A. Kavouras, John P. Troup and Jacqueline R. Berning

To examine the effects of a 3-day high carbohydrate (H-CHO) and low carbohydrate (L-CHO) diet on 45 min of cycling exercise, 12 endurance-trained cyclists performed a 45-min cycling exercise at 82 ± 2% VO2peak following an overnight fast, after a 6-day diet and exercise control. The 7-day protocol was repeated under 2 randomly assigned dietary trials H-CHO and L-CHO. On days 1–3, subjects consumed a mixed diet for both trials and for days 4–6 consumed isocaloric diets that contained either 600 g or 100 g of carbohydrates, for the HCHO and the L-CHO trials, respectively. Muscle biopsy samples, taken from the vastus lateralis prior to the beginning of the 45-min cycling test, indicated that muscle glycogen levels were significantly higher (p < .05) for the H-CHO trial (104.5 ± 9.4 mmol/kg wet wt) when compared to the L-CHO trial (72.2 ± 5.6 mmol/kg wet wt). Heart rate, ratings of perceived exertion, oxygen uptake, and respiratory quotient during exercise were not significantly different between the 2 trials. Serum glucose during exercise for the H-CHO trial significantly increased (p < .05) from 4.5 ± 0.1 mmol · L−1 (pre) to 6.7 ± 0.6 mmol · L−1 (post), while no changes were found for the L-CHO trial. In addition, post-exercise serum glucose was significantly greater (p < .05) for the H-CHO trial when compared to the L-CHO trial (H-CHO, 6.7 ± 0.6 mmol · L−1; L-CHO, 5.2 ± 0.2 mmol · L−1). No significant changes were observed in serum free fatty acid, triglycerides, or insulin concentration in either trial. The findings suggest that L-CHO had no major effect on 45-min cycling exercise that was not observed with H-CHO when the total energy intake was adequate.

Restricted access

Brian J. Martin, Rachel B. Tan, Jenna B. Gillen, Michael E. Percival and Martin J. Gibala

Supplementation with green tea extract (GTE) in animals has been reported to induce numerous metabolic adaptations including increased fat oxidation during exercise and improved performance. However, data regarding the metabolic and physiological effects of GTE during exercise in humans are limited and equivocal.

Purpose:

To examine the effects of short-term GTE treatment on resting energy expenditure (REE), wholebody substrate utilization during exercise and time trial performance.

Methods:

Fifteen active men (24 ± 3 y; VO2peak = 48 ± 7 ml·kg·min−1; BMI = 26 ± 3 kg·m2(–1)) ingested GTE (3x per day = 1,000 mg/d) or placebo (PLA) for 2 day in a double-blind, crossover design (each separated by a 1 week wash-out period). REE was assessed in the fasted state. Subjects then ingested a standardized breakfast (~5.0 kcal·kg-1) and 90 min later performed a 60 min cycling bout at an intensity corresponding to individual maximal fat oxidation (44 ± 11% VO2peak), followed by a 250 kJ TT.

Results:

REE, whole-body oxygen consumption (VO2) and substrate oxidation rates during steady-state exercise were not different between treatments. However, mean heart rate (HR) was lower in GTE vs. PLA (115 ± 16 vs. 118 ± 17 beats·min−1; main effect, p = .049). Mixed venous blood [glycerol] was higher during rest and exercise after GTE vs. PLA (p = .006, main effect for treatment) but glucose, insulin and free-fatty acids were not different. Subsequent time trial performance was not different between treatments (GTE = 25:38 ± 5:32 vs. PLA = 26:08 ± 8:13 min; p = .75).

Conclusion:

GTE had minimal effects on whole-body substrate metabolism but significantly increased plasma glycerol and lowered heart rate during steady-state exercise, suggesting a potential increase in lipolysis and a cardiovascular effect that warrants further investigation.

Restricted access

Anissa Cherif, Romain Meeusen, Abdulaziz Farooq, Joong Ryu, Mohamed Amine Fenneni, Zoran Nikolovski, Sittana Elshafie, Karim Chamari and Bart Roelands

Purpose:

To examine the effects of 3 d of intermittent fasting (3d-IF: abstaining from eating/drinking from dawn to sunset) on physical performance and metabolic responses to repeated sprints (RSs).

Methods:

Twenty-one active males performed an RS test (2 sets: 5 × 5-s maximal sprints with 25 s of recovery between and 3 min of recovery between sets on an instrumented treadmill) in 2 conditions: counterbalanced fed/control session (CS) and fasting session (FS). Biomechanical and biochemical markers were assessed preexercise and postexercise.

Results:

Significant main effects of IF were observed for sprints: maximal speed (P = .016), mean speed (P = .015), maximal power (P = .035), mean power (P = .049), vertical stiffness (P = .032), and vertical center-of-mass displacement (P = .047). Sprint speed and vertical stiffness decreased during the 1st (P = .003 and P = .005) and 2nd sprints (P = .046 and P = .048) of set 2, respectively. Postexercise insulin decreased in CS (P = .023) but not in FS (P = .230). Free-fatty-acid levels were higher in FS than in CS at preexercise (P < .001) and at postexercise (P = .009). High-density lipoprotein cholesterol (HDL-C) was higher at postexercise in FS (1.32 ± 0.22 mmol/L) than in CS (1.26 ± 0.21 mmol/L, P = .039). The triglyceride (TG) concentration was decreased in FS (P < .05) compared with CS.

Conclusions:

3d-IF impaired speed and power through a decrease in vertical stiffness during the initial runs of the 2nd set of RS. The findings of the current study confirmed the benefits of 3d-IF: improved HDL-C and TG profiles while maintaining total cholesterol and low-density lipoprotein cholesterol levels. Moreover, improving muscle power might be a key factor to retain a higher vertical stiffness and to partly counteract the negative effects of intermittent fasting.

Restricted access

Sara Dean, Andrea Braakhuis and Carl Paton

Researchers have long been investigating strategies that can increase athletes’ ability to oxidize fatty acids and spare carbohydrate, thus potentially improving endurance capacity. Green-tea extract (epigallocatechin-3-gallate; EGCG) has been shown to improve endurance capacity in mice. If a green-tea extract can stimulate fat oxidation and as a result spare glycogen stores, then athletes may benefit through improved endurance performance. Eight male cyclists completed a study incorporating a 3-way crossover, randomized, placebo-controlled, double-blinded, diet-controlled research design. All participants received 3 different treatments (placebo 270 mg, EGCG 270 mg, and placebo 270 mg + caffeine 3 mg/kg) over a 6-day period and 1 hr before exercise testing. Each participant completed 3 exercise trials consisting of 60 min of cycling at 60% maximum oxygen uptake (VO2max) immediately followed by a self-paced 40-km cycling time trial. The study found little benefit in consuming green-tea extract on fat oxidation or cycling performance, unlike caffeine, which did benefit cycling performance. The physiological responses observed during submaximal cycling after caffeine ingestion were similar to those reported previously, including an increase in heart rate (EGCG 147 ± 17, caffeine 146 ± 19, and placebo 144 ± 15 beats/min), glucose at the 40-min exercise time point (placebo 5.0 ± 0.8, EGCG 5.4 ± 1.0, and caffeine 5.8 ± 1.0 mmol/L), and resting plasma free fatty acids and no change in the amount of carbohydrate and fat being oxidized. Therefore, it was concluded that green-tea extract offers no additional benefit to cyclists over and above those achieved by using caffeine.

Restricted access

Jens Bangsbo, Fedon Marcello Iaia and Peter Krustrup

The physical demands in soccer have been studied intensively, and the aim of the present review is to provide an overview of metabolic changes during a game and their relation to the development of fatigue. Heart-rate and body-temperature measurements suggest that for elite soccer players the average oxygen uptake during a match is around 70% of maximum oxygen uptake (VO2 max). A top-class player has 150 to 250 brief intense actions during a game, indicating that the rates of creatine-phosphate (CP) utilization and glycolysis are frequently high during a game, which is supported by findings of reduced muscle CP levels and several-fold increases in blood and muscle lactate concentrations. Likewise, muscle pH is lowered and muscle inosine monophosphate (IMP) elevated during a soccer game. Fatigue appears to occur temporarily during a game, but it is not likely to be caused by elevated muscle lactate, lowered muscle pH, or change in muscle-energy status. It is unclear what causes the transient reduced ability of players to perform maximally. Muscle glycogen is reduced by 40% to 90% during a game and is probably the most important substrate for energy production, and fatigue toward the end of a game might be related to depletion of glycogen in some muscle fibers. Blood glucose and catecholamines are elevated and insulin lowered during a game. The blood free-fatty-acid levels increase progressively during a game, probably reflecting an increasing fat oxidation compensating for the lowering of muscle glycogen. Thus, elite soccer players have high aerobic requirements throughout a game and extensive anaerobic demands during periods of a match leading to major metabolic changes, which might contribute to the observed development of fatigue during and toward the end of a game.