Search Results

You are looking at 31 - 40 of 161 items for :

  • "metabolic response" x
Clear All
Restricted access

Allen C. Parcell, Melinda L. Ray, Kristine A. Moss, Timothy M. Ruden, Rick L. Sharp and Douglas S. King

Previous investigations have reported that soluble fiber reduces the plasma glucose and insulin changes after an oral glucose load. To improve the payability of a soluble-fiber feeding, this study addressed how a combined, soluble fiber (delivered in capsule form) and a preexercise CHO feeding would affect metabolic responses during exercise. On 3 different days, participants ingested a placebo (CON), 75 g liquid CHO (GLU), or 75 g liquid CHO with 14.5 g encapsulated guar gum (FIB) 45 min before cycling for 60 min at 70% VO2peak. Peak concentrations of plasma glucose and insulin were similar and significantly greater than CON preexercise (p < .05). Similarities in carbohydrate reliance were observed in GLU and FIB. Muscle glycogen use did not differ significantly among trials. These results demonstrate that encapsulated soluble fiber delivered with a liquid CHO feeding does not affect plasma glucose, insulin, or muscle glycogen utilization during exercise.

Restricted access

Yves Eberhard, Jacqueline Eterradossi and Bettina Debû

The effects of exercise and of a physical conditioning program on 11 subjects (7 males, 4 females, aged 15 to 20) with Down’s syndrome (DS) were analyzed. Metabolic responses were evaluated before and after two ergometric cycle exercise tests: an incremental exercise to symptom limited VO2 max. and an endurance test performed at 60% of maximal aerobic power. Plasma substrates, electrolytes, catecholamines, lipoprotein lipid profiles, and superoxide dismutase were assayed immediately before and after these tests. The results indicated (a) a low blood lactate level for peak exercise, (b) slow free fatty acid mobilization at the start of exercise, (c) a low level of cholesterol HDL and a high level of pre-beta VLDL at rest, (d) adjustment to nearly normal lipid profiles with endurance activity, and (e) differences between before and after training for superoxide dismutase levels in subjects with DS. These results suggest that endurance training could have long-term effects on the pathophysiological consequences of DS.

Restricted access

John G. Seifert, Greg L. Paul, Dennis E. Eddy and Robert Murray

The effects of preexercise hyperinsulinemia on exercising plasma glucose, plasma insulin, and metabolic responses were assessed during 50 min cycling at 62% VO2max. Subjects were fed a 6% sucrose/glucose solution (LCHO) or a 20% maltodextrin/glucose solution (HCHO) to induce changes in plasma insulin. During exercise, subjects assessed perceived nauseousness and lightheadedness. By the start of exercise, plasma glucose and plasma insulin had increased. In the LCHO trial, plasma glucose values significantly decreased below the baseline value at 30 min of exercise. However, by 40 min, exercise plasma glucose and insulin values were similar to the baseline value. Exercise plasma glucose and insulin did not differ from baseline values in the HCHO trial. Ingestion of LCHO or HCHO was not associated with nausea or lightheadedness. It was concluded that the hyperinsulinemia induced by preexercise feediigs of CHO did not result in frank hypoglycemia or adversely affect sensory or physiological responses during 50 min of moderate-intensity cycling.

Restricted access

Kelly S. Chu, Edward C. Rhodes, Jack E. Taunton and Alan D. Martin

The purpose of this study was to assess the difference in maximal physiological responses between an acute bout of deep-water running (DWR) and treadmill running (TMR) in young and older adults. Participants were 9 young and 9 older women who performed maximal DWR and TMR tests. Maximal measures included oxygen consumption (VO2max), heart rate (HRmax), ventilation (VE), respiratory-exchange ratio (RER), and blood lactate (BLac). The young women exhibited higher VO2max, HRmax, VE, and BLac than did the older women for both exercise conditions (p < .05). Lower VO2max and HRmax values were observed with DWR for both age groups (p < .05). No significant differences were found for VE, RER, and BLac in either group between exercise conditions, nor a significant interaction between exercise conditions or ages for any of the variables measured. The data suggest that although older adults exhibit lower maximal metabolic responses, differences between DWR and TMR responses occur irrespective of age.

Restricted access

N.D. Clarke, B. Drust, D.P.M. MacLaren and T. Reilly

The aim of the present study was to investigate the effect of manipulating the provision of sports drink during soccer-specific exercise on metabolism and performance. Soccer players (N = 12) performed a soccer-specific protocol on three occasions. On two, 7 mL/kg carbohydrate-electrolyte (CHOv) or placebo (PLA) solutions were ingested at 0 and 45 min. On a third, the same total volume of carbohydrate-electrolyte was consumed (CHOf) in smaller volumes at 0, 15, 30, 45, 60, and 75 min. Plasma glucose, glycerol, non-esterified free fatty acids (NEFA), cortisol, and CHO oxidation were not significantly different between CHOv and CHOf (P > 0.05). Sprint power was not significantly affected (P > 0.05) by the experimental trials. This study demonstrates when the total volume of carbohydrate consumed is equal, manipulating the timing and volume of ingestion elicits similar metabolic responses without affecting exercise performance.

Restricted access

Stephen F. Figoni, Richard A. Boileau, Benjamin H. Massey and Joseph R. Larsen

The purpose of this study was to compare quadriplegic and able-bodied men on selected cardiovascular and metabolic responses to arm-crank ergometry at the same rate of oxygen consumption (V̇O2). Subjects included 11 untrained, spinal cord-injured, C5–C7 complete quadriplegic men and 11 untrained, able-bodied men of similar age (27 years), height (177 cm), and mass (65 kg). Measurement techniques included open-circuit spirometry, impedance cardiography, and electrocardiography. Compared with the able-bodied group, at the V̇O2 of 0.5 L/min, the quadriplegics displayed a significantly higher mean heart rate and arteriovenous O2 difference, lower stroke volume and cardiac output, and similar myocardial contractility. These results suggest that quadriplegic men achieve an exercise-induced V̇O2 of 0.5 L/min through different central cardiovascular adjustments than do able-bodied men. Quadriplegics deliver less O2 from the heart toward the tissues but extract more O2 from the blood. Tachycardia may contribute to low cardiac preload and low stroke volume, while paradoxically tending to compensate for low stroke volume by minimizing reduction of cardiac output.

Restricted access

Jennie A. Gilbert and James E. Misner

This study examined the metabolic response to a 763-kcal mixed meal at rest and during 30 min of exercise at 50% maximal oxygen consumption (VO2max) in 8 aerobically trained (AT), 8 resistance trained (RT), and 8 untrained (UT) subjects. Oxygen consumption (VO,) was measured minute by minute during 30 min of exercise by indirect calorimetry on 2 nonconsecutive days (postabsorptive exercise, PA; and postprandial exercise, PP). Total VO, consumed and total caloric expenditure during the PA and PP conditions were similar for the three groups, indicating that prior food intake did not affect energy expenditure during exercise. Consequently, TEM during exercise did not differ significantly among the groups. Respiratory exchange ratio (R) differed significantly only during the PA condition, with the AT group exhibiting significantly lower R values compared to the RT group, and significantly lower R values compared to the UT group. These data suggest that the consumption of a meal 30 min prior to exercise does not increase TEM during exercise in AT, RT, and UT subjects.

Restricted access

Iñigo Mujika, Trent Stellingwerff and Kevin Tipton

The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes’ training adaptation.

Restricted access

Bryan Saunders, Craig Sale, Roger C. Harris and Caroline Sunderland

Purpose:

To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not.

Methods:

Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise.

Results:

SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 · 9.1 vs 45.6 · 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not.

Conclusions:

SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.

Restricted access

Nathan T. Jenkins, Jennifer L. Trilk, Arpit Singhal, Patrick J. O’Connor and Kirk J. Cureton

The purpose of this experiment was to learn whether low doses of caffeine have ergogenic, perceptual, and metabolic effects during cycling. To determine the effects of 1, 2, and 3 mg/kg caffeine on cycling performance, differentiated ratings of perceived exertion (D-RPE), quadriceps pain intensity, and metabolic responses to cycling exercise, 13 cyclists exercised on a stationary ergometer for 15 min at 80% VO2peak, then, after 4 min of active recovery, completed a 15-min performance ride 60 min after ingesting caffeine or placebo. Work done (kJ/kg) during the performance ride was used as a measure of performance. D-RPE, pain ratings, and expired-gas data were obtained every 3 min, and blood lactate concentrations were obtained at 15 and 30 min. Compared with placebo, caffeine doses of 2 and 3 mg/kg increased performance by 4% (95% CI: 1.0–6.8%, p = .02) and 3% (95% CI: –0.4% to 6.8%, p = .077), respectively. These effects were ergogenic, on average, but varied considerably in magnitude among individual cyclists. There were no effects of caffeine on D-RPE or pain throughout the cycling task. Selected metabolic variables were affected by caffeine, consistent with its known actions. The authors conclude that caffeine preparations of 2 and 3 mg/kg enhanced performance, but future work should aim to explain the considerable interindividual variability of the drug’s ergogenic properties.