Search Results

You are looking at 31 - 40 of 116 items for :

  • "resting metabolic rate" x
Clear All
Restricted access

Eleni Michopoulou, Alexandra Avloniti, Antonios Kambas, Diamanda Leontsini, Maria Michalopoulou, Symeon Tournis and Ioannis G. Fatouros

This study determined dietary intake and energy balance of elite premenarcheal rhythmic gymnasts during their preseason training. Forty rhythmic gymnasts and 40 sedentary age-matched females (10–12 yrs) participated in the study. Anthropometric profile and skeletal ages were determined. Dietary intake and physical activity were assessed to estimate daily energy intake, daily energy expenditure, and resting metabolic rate. Groups demonstrated comparable height, bone age, pubertal development, resting metabolic rate. Gymnasts had lower body mass, BMI, body fat than age-matched controls. Although groups demonstrated comparable daily energy intake, gymnasts exhibited a higher daily energy expenditure resulting in a daily energy deficit. Gymnasts also had higher carbohydrate intake but lower fat and calcium intake. Both groups were below the recommended dietary allowances for fiber, water, calcium, phosphorus and vitamin intake. Gymnasts may need to raise their daily energy intake to avoid the energy deficit during periods of intense training.

Restricted access

Cynthia A. Gillette, Richard C. Bullough and Christopher L. Melby

Postexercise energy metabolism was examined in male subjects age 22-35 years in response to three different treatments: a strenuous bout of resistive exercise (REx), a bout of stationary cycling (AEx) at 50% peak VO2, and a control condition (C) of quiet sitting. Resting metabolic rate (RMR) was measured the morning of and the morning following each condition. Recovery oxygen consumption (RcO2) was measured for 5 hr following each treatment. Total 5-hr RcO2 was higher for the REx treatment relative to both AEx and C, with the largest treatment differences occurring early during recovery. There were no large treatment differences in postexercise respiratory exchange ratio values, except for the first hour of recovery following REx. RMR measured 14.5 hr postexercise for the REx condition was significantly elevated compared to C. These results suggest that strenuous resistive exercise results in a greater excess postexercise oxygen consumption compared to steady-state endurance exercise of similar estimated energy cost.

Restricted access

Jennifer Gornall and Rudolph G. Villani

The primary aim was to investigate whether the reduction in resting metabolic rate (RMR) and fat free mass (FFM) associated with a short-term very low kilojoule diet (VLKD) is altered by concurrent resistance exercise. Twenty overweight, premenopausal women were pair matched on body surface area and randomly assigned to either diet only (3,400 kJ/day) or diet combined with resistance training. Before and after 4 weeks of treatment, RMR was assessed by indirect calorimetry; total body mass (TBM), FFM, and fat mass (FM) by dual energy x-ray absorptiometry; total body water (TBW) by bioelectrical impedance; and strength by a weight-lifting test. Both groups had significantly lower TBM, FFM, FM, TBW, absolute RMR, and RMR, with FFM as the covariate, in the posttests than the pretests with no significant differences between groups. It was concluded that 4 weeks of resistance training did not prevent or reduce the decline in FFM and RMR observed with a VLKD.

Restricted access

R. Scott Van Zant

Maintenance of a healthy body weight results from equating total enegy intake to total energy expenditure (resting metabolic rate, RMR, the thermic effect of feeding, TEF; the thermic effect of activity, TEA, and adaptive thermogenesis, AT). Dietary quantity and composition and acute and chrvnic exercise have been shown to influence all components of total energy expenditure. This paper reviews the effects of exercise and diet on energy expenditure and, ultimately, energy balance. Overnutrition increases RMR and TEF while undernutrition decreases them. Carbohydrate and protein oxidation is closely tied to intake whereas fat oxidation does not closely parallel fat intake. Thus excess fat intake is likely to lead to fat storage. Acute endurance exercise at >70% VO2max increases postexercise RMR and TEF. Chronic exercise training may increase RMR while also increasing TEF. Review of the research indicates that energy balance may best be achieved by consuming an energy appropriate, low fat diet complemented by endurance exercise.

Restricted access

Douglas R. Seals, Kevin D. Monahan, Christopher Bell, Hirofumi Tanaka and Pamela P. Jones

Tonic vagal modulation of cardiac period (R-R interval) decreases with advancing age, but is greater in middle-aged and older adults who habitually perform aerobic exercise compared with their sedentary peers. Cardiovagal baroreflex sensitivity also declines markedly with age in sedentary adults but only 50% as much in regularly exercising adults. In previously sedentary middle-aged and older adults, a 3-month program of moderate aerobic exercise increases cardiovagal baroreflex sensitivity by 25%. Tonic (basal) sympathetic nervous system (SNS) activity increases with advancing age in both sedentary and habitually exercising adults. Despite this, SNS b-adrenergic support of energy metabolism (resting metabolic rate-RMR) declines with age in sedentary individuals. However, SNS b-adrenergic support of RMR is maintained with age inenduranceexercise-trainedadultsandthereforeismuchgreaterinmiddle-aged and older individuals who exercise regularly compared with their sedentary peers. Thus, regular aerobic (endurance) exercise modulates selective age associated impairments in autonomic nervous system-physiological function.

Open access

Jeffer Eidi Sasaki, Cheryl A. Howe, Dinesh John, Amanda Hickey, Jeremy Steeves, Scott Conger, Kate Lyden, Sarah Kozey-Keadle, Sarah Burkart, Sofiya Alhassan, David Bassett Jr and Patty S. Freedson

Background:

Thirty-five percent of the activities assigned MET values in the Compendium of Energy Expenditures for Youth were obtained from direct measurement of energy expenditure (EE). The aim of this study was to provide directly measured EE for several different activities in youth.

Methods:

Resting metabolic rate (RMR) of 178 youths (80 females, 98 males) was first measured. Participants then performed structured activity bouts while wearing a portable metabolic system to directly measure EE. Steady-state oxygen consumption data were used to compute activity METstandard (activity VO2/3.5) and METmeasured (activity VO2/measured RMR) for the different activities.

Results:

Rates of EE were measured for 70 different activities and ranged from 1.9 to 12.0 METstandard and 1.5 to 10.0 METmeasured.

Conclusion:

This study provides directly measured energy cost values for 70 activities in children and adolescents. It contributes empirical data to support the expansion of the Compendium of Energy Expenditures for Youth.

Open access

Yong Gao, Haichun Sun, Jie Zhuang, Jian Zhang, Lynda Ransdell, Zheng Zhu and Siya Wang

Background:

This study determined the metabolic equivalents (METs) of several activities typically performed by Chinese youth.

Methods:

Thirty youth (12 years) performed 7 activities that reflected their daily activities while Energy Expenditure (EE) was measured in a metabolic chamber.

Results:

METs were calculated as activity EE divided by participant’s measured resting metabolic rate. A MET value ranging from 0.8 to 1.2 was obtained for sleeping, watching TV, playing computer games, reading and doing homework. Performing radio gymnastics had a MET value of 2.9. Jumping rope at low effort required 3.1 METs. Except for watching TV, METs for other activities in this study were lower than Youth Compendium values.

Conclusions:

The results provide empirical evidence for more accurately assessing EE of activities commonly performed by Chinese youth. This is the first study to determine METs for radio gymnastics and jump rope in Chinese youth.

Restricted access

Lisa H. Colbert, Charles E. Matthews, Dale A. Schoeller, Thomas C. Havighurst and KyungMann Kim

This study examined the intensity of activity contributing to physical activity energy expenditure in older adults. In 57 men and women aged ≥ 65, total energy expenditure (TEE) was measured using doubly labeled water and resting metabolic rate was measured using indirect calorimetry to calculate a physical activity index (PAI). Sedentary time and physical activity of light and moderate to vigorous (mod/vig) intensity was measured using an accelerometer. The subjects were 75 ± 7 yrs (mean ± SD) of age and 79% female. Subjects spent 66 ± 8, 25 ± 5, and 9 ± 4% of monitor wear time in sedentary, light, and mod/vig activity per day, respectively. In a mixture regression model, both light (β = 29.6 [15.6–43.6, 95% CI]), p < .001) and mod/vig intensity activity (β = 28.7 [7.4−50.0, 95% CI]), p = .01) were strongly associated with PAI, suggesting that both light and mod/vig intensity activities are major determinants of their physical activity energy expenditure.

Restricted access

Melinda M. Manore, Janice Thompson and Marcy Russo

This study presents the diet and exercise strategies of a world-class bodybuilder during an 8-week precompetition period. Weighed food records were kept daily, and body fat, resting metabolic rate (RMR), VO2max, blood lipids, and liver enzymes were measured. Two hrs of aerobic exercise and 3 hrs of weight training were done daily 6 daystweek. Mean energy intake was 4,952 kcallday (54 kcallkg) and included 1,278 kcallday from mediumchain triglycerides (MCT). Diet without MCT provided 76% of energy from carbohydrate, 19% from protein (1.9 g proteiag), and 5% from fat. Micronutrients were consumed at ≥ 100% of the RDA, except for zinc and calcium, without supplementation. Mean RMR was 2,098 kcallday and represented 43% of energy intake. VO2max was 53 ml.kg−1.min−1. Underwater weighing showed that body fat decreased from 9% to 7%. Blood lipids were normal, but two liver enzymes were elevated (alanine and aspartate aminotransferase). This world-class bodybuilder achieved body fat goals by following a nutrient dense, high energy, high carbohydrate diet and an exercise program that emphasized both aerobic and anaerobic metabolism.

Restricted access

Kimberly M. White, Stephanie J. Bauer, Kristopher K. Hartz and Monika Baldridge

Introduction:

Resistance training is an effective method to decrease body fat (BF) and increase fat-free mass (FFM) and fat oxidation (FO). Dairy foods containing calcium and vitamin D might enhance these benefits. This study investigated the combined effects of habitual yogurt consumption and resistance training on body composition and metabolism.

Methods:

Untrained women (N = 35) participated in an 8-wk resistance-training program. The yogurt group (Y) consumed 3 servings of yogurt containing vitamin D per day, and the control groups maintained their baseline lowdairy-calcium diet. Postexercise, Y consumed 1 of the 3 servings/d fat-free yogurt, the protein group consumed an isocaloric product without calcium or vitamin D, and the carbohydrate group consumed an isocaloric product without protein. Strength, body composition, fasted resting metabolic rate (RMR) and FO, and serum 25-hydroxyvitamin D were measured before and after training.

Results:

Calories (kcal · kg−1 · d−1) and protein (g · kg−1 · d−1) significantly increased from baseline for Y. FFM increased (main effect p = .002) and %BF decreased (main effect .02) for all groups with training, but Group × Time interactions were not observed. RMR and FO did not change with training for any group.

Conclusion:

Habitual consumption of yogurt during resistance training did not augment changes in body composition compared with a low-dairy diet. Y decreased %BF as a result of training, however, even with increased calorie consumption.