Search Results

You are looking at 41 - 50 of 183 items for :

  • "calorimetry" x
Clear All
Restricted access

Gerda Jimmy, Roland Seiler and Urs Maeder

Background:

Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children.

Methods:

Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model.

Results:

All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches.

Conclusions:

The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.

Restricted access

Barbara E. Ainsworth, Robert G. McMurray and Susan K. Veazey

The purpose of this study was to determine the accuracy of two submaximal exercise tests, the Sitting-Chair Step Test (Smith & Gilligan. 1983) and the Modified Step Test (Amundsen, DeVahl, & Ellingham, 1989) to predict peak oxygen uptake (VO2 peak) in 28 adults ages 60 to 85 years. VO2 peak was measured by indirect calorimetry during a treadmill maximal graded exercise test (VO2 peak, range 11.6–31.1 ml · kg −l · min−1). In each of the submaximal tests, VO2 was predicted by plotting stage-by-stage submaximal heart rate (HR) and perceived exertion (RPE) data against VO2 for each stage and extrapolating the data to respective age-predicted maximal HR or RPE values. In the Sitting-Chair Step Test (n = 23), no significant differences were observed between measured and predicted VO2 peak values (p > .05). However, predicted VO2 peak values from the HR were 4.3 ml · kg−1 · min−1 higher than VO2 peak values predicted from the RPE data (p < .05). In the Modified Step Test (n = 22), no significant differences were observed between measured and predicted VO2 peak values (p > .05). Predictive accuracy was modest, explaining 49–78% of the variance in VO2 peak. These data suggest that the Sitting-Chair Step Test and the Modified Step Test have moderate validity in predicting VO2 peak in older men and women.

Restricted access

Kent W. Goben, Gary A. Sforzo and Patricia A. Frye

This study investigated the effect of varying exercise intensity on the thermic effect of food (TEF). Sixteen lean male subjects were matched for VO2max and randomly assigned to either a high or low intensity group for 30 min of treadmill exercise. Caloric expenditure was measured using indirect calorimetry at rest and at 30-min intervals OYer 3 hrs following each of three conditions: a 750-kcal liquid meal, high or low intensity exercise, and a 750-kcal liquid meal followed by high or low intensity exercise. Low intensity exercise enhanced the TEF during recovery at 60 and 90 min while high intensity enhanced it only at 180 min but depressed it at 30 min. Total metabolic expense for a 3-hr postmeal period was not differently affected by the two exercise intensities. Exercise following a meal had a synergistic effect on metabolism; however, this effect was delayed until 180 min postmeal when exercise intensity was high. The circulatory demands of high intensity exercise may have initially blunted the TEF, but ultimately the TEF measured over the 3-hr period was at least equal to that experienced following low intensity exercise.

Restricted access

Dennis van Hamont, Christopher R. Harvey, Denis Massicotte, Russell Frew, François Peronnet and Nancy J. Rehrer

Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 ± 1.9 mL · kg−1 · min−1) males (N = 5) completed two 75 min, 80% VO2max trials: 125 g 13C-glucose (CHO); 13C-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 ⋅ 2 g 13C-glucose was given as bicarbonate pool primer. Breath samples and blood glucose were analyzed for 13C/ 12C with IRMS. Protein oxidation was estimated from urine and sweat urea. Indirect calorimetry (protein corrected) and 13C/ 12C enrichment in expired CO2 and blood glucose allowed exogenous (Gexo), endogenous (Gendo), muscle (Gmuscle), and liver glucose oxidation calculations. During exercise (75 min) in CHO versus C (respectively): protein oxidation was lower (6.8 ± 2.7, 18.8 ± 5.9 g; P = 0.01); Gendo was reduced (71.2 ± 3.8, 80.7 ± 5.7%; P = 0.01); Gmuscle was reduced (55.3 ± 6.1, 65.9 ± 6.0%; P = 0.01) compensated by increased Gexo (58.3 ± 2.1, 3.87 ± 0.85 g; P = 0.000002). Glucose ingestion during exercise can spare endogenous protein and carbohydrate, in fed cyclists, without gly-cogen depletion.

Restricted access

Kate Lyden, Natalia Petruski, Stephanie Mix, John Staudenmayer and Patty Freedson

Background:

Physical activity and sedentary behavior measurement tools need to be validated in free-living settings. Direct observation (DO) may be an appropriate criterion for these studies. However, it is not known if trained observers can correctly judge the absolute intensity of free-living activities.

Purpose:

To compare DO estimates of total MET-hours and time in activity intensity categories to a criterion measure from indirect calorimetry (IC).

Methods:

Fifteen participants were directly observed on three separate days for two hours each day. During this time participants wore an Oxycon Mobile indirect calorimeter and performed any activity of their choice within the reception area of the wireless metabolic equipment. Participants were provided with a desk for sedentary activities (writing, reading, computer use) and had access to exercise equipment (treadmill, bike).

Results:

DO accurately and precisely estimated MET-hours [% bias (95% CI) = –12.7% (–16.4, –7.3), ICC = 0.98], time in low intensity activity [% bias (95% CI) = 2.1% (1.1, 3.2), ICC = 1.00] and time in moderate to vigorous intensity activity [% bias (95% CI) –4.9% (–7.4, –2.5), ICC = 1.00].

Conclusion:

This study provides evidence that DO can be used as a criterion measure of absolute intensity in free-living validation studies.

Restricted access

Deirdre M. Harrington, Kieran P. Dowd, Catrine Tudor-Locke and Alan E. Donnelly

The number of steps/minute (i.e., cadence) that equates to moderate intensity in adolescents is not known. To that end, 31 adolescent females walked on a treadmill at 5 different speeds while wearing an ActivPAL accelerometer and oxygen uptake was recorded by indirect calorimetry. The relationship between metabolic equivalents (METs) and cadence was explored using 3 different analytical approaches. Cadence was a significant predictor of METs (r=.70; p<.001). Moderate intensity (3 METs) corresponded to 94 or 114 steps/minute based on the mixed model and ROC analysis, respectively. These two values, and a practical value of 100 steps/minute, were cross-validated on an independent sample of 33 adolescent females during over-ground walking at 3 speeds. The sensitivity and specificity of each value correctly identifying 3 METs were 98.5% and 87.2% for 94 steps/minute, 72.9% and 98.8 for 114 steps/minute and 96.5% and 95.7% for 100 steps/minute. Compromising on a single cadence of 100 steps/minute would be a practical value that approximates moderate intensity in adolescent females and can be used for physical activity interpretation and promotion.

Restricted access

Nirjhar Dutta and Mark A. Pereira

Background:

The objective of this study was to estimate the mean difference in energy expenditure (EE) in healthy adults between playing active video games (AVGs) compared with traditional video games (TVGs) or rest.

Methods:

A systematic search was conducted on Ovid MEDLINE, Web of Knowledge, and Academic Search Premier between 1998 and April 2012 for relevant keywords, yielding 15 studies. EE and heart rate (HR) data were extracted, and random effects meta-analysis was performed.

Results:

EE during AVG play was 1.81 (95% CI, 1.29–2.34; I 2 = 94.2%) kcal/kg/hr higher, or about 108 kcal higher per hour for a 60-kg person, compared with TVG play. Mean HR was 21 (95% CI, 13.7–28.3; I 2 = 93.4%) beats higher per minute during AVG play compared with TVG play. There was wide variation in the EE and HR estimates across studies because different games were evaluated. Overall metabolic equivalent associated with AVG play was 2.62 (95% CI, 2.25–3.00; I 2 = 99.2%), equivalent to a light activity level. Most studies had low risk of bias due to proper study design and use of indirect calorimetry to measure EE.

Conclusion:

AVGs may be used to replace sedentary screen time (eg, television watching or TVG play) with light activity in healthy adults.

Restricted access

Dac Minh Tuan Nguyen, Virgile Lecoultre, Yoshiyuki Sunami and Yves Schutz

Background:

Physical activity (PA) and related energy expenditure (EE) is often assessed by means of a single technique. Because of inherent limitations, single techniques may not allow for an accurate assessment both PA and related EE. The aim of this study was to develop a model to accurately assess common PA types and durations and thus EE in free-living conditions, combining data from global positioning system (GPS) and 2 accelerometers.

Methods:

Forty-one volunteers participated in the study. First, a model was developed and adjusted to measured EE with a first group of subjects (Protocol I, n = 12) who performed 6 structured and supervised PA. Then, the model was validated over 2 experimental phases with 2 groups (n = 12 and n = 17) performing scheduled (Protocol I) and spontaneous common activities in real-life condition (Protocol II). Predicted EE was compared with actual EE as measured by portable indirect calorimetry.

Results:

In protocol I, performed PA types could be recognized with little error. The duration of each PA type could be predicted with an accuracy below 1 minute. Measured and predicted EE were strongly associated (r = .97, P < .001).

Conclusion:

Combining GPS and 2 accelerometers allows for an accurate assessment of PA and EE in free-living situations.

Restricted access

Jennie A. Gilbert and James E. Misner

This study examined the metabolic response to a 763-kcal mixed meal at rest and during 30 min of exercise at 50% maximal oxygen consumption (VO2max) in 8 aerobically trained (AT), 8 resistance trained (RT), and 8 untrained (UT) subjects. Oxygen consumption (VO,) was measured minute by minute during 30 min of exercise by indirect calorimetry on 2 nonconsecutive days (postabsorptive exercise, PA; and postprandial exercise, PP). Total VO, consumed and total caloric expenditure during the PA and PP conditions were similar for the three groups, indicating that prior food intake did not affect energy expenditure during exercise. Consequently, TEM during exercise did not differ significantly among the groups. Respiratory exchange ratio (R) differed significantly only during the PA condition, with the AT group exhibiting significantly lower R values compared to the RT group, and significantly lower R values compared to the UT group. These data suggest that the consumption of a meal 30 min prior to exercise does not increase TEM during exercise in AT, RT, and UT subjects.

Restricted access

Peter G. Breithaupt, Rachel C. Colley and Kristi B. Adamo

The aim of the current study was to investigate the relationship between the Oxygen Uptake Efficiency Slope (OUES) and traditional measures of cardiorespiratory function in an overweight/obese pediatric sample. Maximal treadmill exercise testing with indirect calorimetry was completed on 56 obese children aged 7–18 years. Maximal OUES, submaximal OUES, VO2peak, VEpeak, and ventilatory threshold (VT) were determined. In line with comparable research in healthy-weight samples, maximal and submaximal OUES were both correlated with VO2peak, VEpeak, and VT (r2= 0.44−0.91) in the obese pediatric sample. Correlations were also found with anthropometric variables, including height (cm), body surface area (m2), body mass (kg), and fat free mass (kg). In comparing our data to a published sample of healthy weight children, maximal and submaximal exercise OUES were both higher in our obese sample. However, when we adjusted for any of body mass (kg), BSA (m2), or FFM (kg) the obese children were found to be less efficient. The results of this study suggest the use of OUES to be an appropriate measure of efficiency of ventilation and cardiorespiratory function in obese children, while also showing that our sample of obese children were less efficient on a per kilogram basis when compared with their healthy weight peers.