Search Results

You are looking at 41 - 50 of 174 items for :

  • "calorimetry" x
Clear All
Restricted access

Lance Ratcliff, Sareen S. Gropper, B. Douglas White, David M. Shannon and Kevin W. Huggins

This study compared type of habitual exercise and meal form on diet-induced thermogenesis (DIT) in 29 men age 19–28 yr. Resting metabolic rate (RMR) and DIT response to solid-meal (bar) vs. liquid-meal (shake) ingestion were measured via indirect calorimetry; classifications were sedentary (n = 9), endurance trained (n = 11), or resistance trained (n = 9). Height, weight, and body composition (using bioelectrical impedance) were measured for each subject. Energy expenditure was determined before and every 30 min after meal consumption for 210 min. RMR was significantly (p = .045) higher in the endurance- and resistance-trained groups. However, when expressed per kilogram fat-free mass (FFM; relative RMR), differences were not significant. Both DIT (kcal/min) and relative DIT (kcal · min−1 · kg FFM−1) significantly increased with time (p < .0001) from RMR for each meal form. There was no significant exercise-group effect on DIT or relative DIT. There was a significant (p = .012) effect of meal form on DIT; shakes elicited a higher DIT. This significant difference was not found for relative DIT. There was a significant interaction between group and meal form for DIT (p = .008) and relative DIT (p < .0001). Shakes elicited a significantly greater DIT (p = .0002) and relative DIT (p = .0001) in the resistance-trained group. In the sedentary group, relative DIT from shakes was significantly lower than from bars (p = .019). In conclusion, habitual exercise appears to increase RMR, and meal form may impart changes in relative DIT depending on exercise status.

Restricted access

Kate Lyden, Natalia Petruski, Stephanie Mix, John Staudenmayer and Patty Freedson

Background:

Physical activity and sedentary behavior measurement tools need to be validated in free-living settings. Direct observation (DO) may be an appropriate criterion for these studies. However, it is not known if trained observers can correctly judge the absolute intensity of free-living activities.

Purpose:

To compare DO estimates of total MET-hours and time in activity intensity categories to a criterion measure from indirect calorimetry (IC).

Methods:

Fifteen participants were directly observed on three separate days for two hours each day. During this time participants wore an Oxycon Mobile indirect calorimeter and performed any activity of their choice within the reception area of the wireless metabolic equipment. Participants were provided with a desk for sedentary activities (writing, reading, computer use) and had access to exercise equipment (treadmill, bike).

Results:

DO accurately and precisely estimated MET-hours [% bias (95% CI) = –12.7% (–16.4, –7.3), ICC = 0.98], time in low intensity activity [% bias (95% CI) = 2.1% (1.1, 3.2), ICC = 1.00] and time in moderate to vigorous intensity activity [% bias (95% CI) –4.9% (–7.4, –2.5), ICC = 1.00].

Conclusion:

This study provides evidence that DO can be used as a criterion measure of absolute intensity in free-living validation studies.

Restricted access

Dennis van Hamont, Christopher R. Harvey, Denis Massicotte, Russell Frew, François Peronnet and Nancy J. Rehrer

Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 ± 1.9 mL · kg−1 · min−1) males (N = 5) completed two 75 min, 80% VO2max trials: 125 g 13C-glucose (CHO); 13C-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 ⋅ 2 g 13C-glucose was given as bicarbonate pool primer. Breath samples and blood glucose were analyzed for 13C/ 12C with IRMS. Protein oxidation was estimated from urine and sweat urea. Indirect calorimetry (protein corrected) and 13C/ 12C enrichment in expired CO2 and blood glucose allowed exogenous (Gexo), endogenous (Gendo), muscle (Gmuscle), and liver glucose oxidation calculations. During exercise (75 min) in CHO versus C (respectively): protein oxidation was lower (6.8 ± 2.7, 18.8 ± 5.9 g; P = 0.01); Gendo was reduced (71.2 ± 3.8, 80.7 ± 5.7%; P = 0.01); Gmuscle was reduced (55.3 ± 6.1, 65.9 ± 6.0%; P = 0.01) compensated by increased Gexo (58.3 ± 2.1, 3.87 ± 0.85 g; P = 0.000002). Glucose ingestion during exercise can spare endogenous protein and carbohydrate, in fed cyclists, without gly-cogen depletion.

Restricted access

Meredith C. Peddie, Claire Cameron, Nancy Rehrer and Tracy Perry

Background:

Interrupting sedentary time induces improvements in glucose metabolism; however, it is unclear how much activity is required to reduce the negative effects of prolonged sitting.

Methods:

Sixty-six participants sat continuously for 9 hours except for required bathroom breaks. Participants were fed meal replacement beverages at 60, 240 and 420 min. Blood samples were obtained hourly for 9 hours, with additional samples collected 30 and 45 min after each feeding. Responses were calculated as incremental area under the curve (iAUC) for plasma glucose, insulin and triglyceride. Participants wore a triaxial accelerometer and a heart rate monitor. Energy expenditure was estimated using indirect calorimetry.

Results:

After controlling for age, sex and BMI, every 100 count increase in accelerometer derived total movement was associated with a 0.06 mmol·L-1·9 hours decrease in glucose iAUC (95% CI 0.004–0.1; P = .035), but not associated with changes in insulin or triglyceride iAUC. Every 1 bpm increase in mean heart rate was associated with a 0.76 mmol·L-1·9 hours increase in triglyceride iAUC (95% CI 0.13–1.38).

Conclusion:

Accelerometer measured movement during periods of prolonged sitting can result in minor improvements in postprandial glucose metabolism, but not lipid metabolism.

Open access

Jung-Min Lee, Pedro F. Saint-Maurice, Youngwon Kim, Glenn A. Gaesser and Gregory Welk

Background:

The assessment of physical activity (PA) and energy expenditure (EE) in youth is complicated by inherent variability in growth and maturation during childhood and adolescence. This study provides descriptive summaries of the EE of a diverse range of activities in children ages 7 to 13.

Methods:

A sample of 105 7- to 13-year-old children (boys: 57%, girls: 43%, and Age: 9.9 ± 1.9) performed a series of 12 activities from a pool of 24 activities while being monitored with an indirect calorimetry system.

Results:

Across physical activities, averages of VO2 ml·kg·min-1, VO2 L·min-1, EE, and METs ranged from 3.3 to 53.7 ml·kg·min-1, from 0.15 to 3.2 L·min-1, from 0.7 to 15.9 kcal·min-1, 1.5 MET to 7.8 MET, respectively.

Conclusions:

The energy costs of the activities varied by age, sex, and BMI status reinforcing the need to consider adjustments when examining the relative intensity of PA in youth.

Restricted access

John M. Schuna Jr., Daniel S. Hsia, Catrine Tudor-Locke and Neil M. Johannsen

Background: Active workstations offer the potential for augmenting energy expenditure (EE) in sedentary occupations. However, comparisons of EE during pedal and treadmill desk usage at self-selected intensities are lacking. Methods: A sample of 16 adult participants (8 men and 8 women; 33.9 [7.1] y, 22.5 [2.7] kg/m2) employed in sedentary occupations had their EE measured using indirect calorimetry during 4 conditions: (1) seated rest, (2) seated typing in a traditional office chair, (3) self-paced pedaling on a pedal desk while typing, and (4) self-paced walking on a treadmill desk while typing. Results: For men and women, self-paced pedal and treadmill desk typing significantly increased EE above seated typing (pedal desk: +1.20 to 1.28 kcal/min and treadmill desk: +1.43 to 1.93 kcal/min, P < .001). In men, treadmill desk typing (3.46 [0.19] kcal/min) elicited a significantly higher mean EE than pedal desk typing (2.73 [0.21] kcal/min, P < .001). No significant difference in EE was observed between treadmill desk typing (2.68 [0.19] kcal/min) and pedal desk typing among women (2.52 [0.21] kcal/min). Conclusions: Self-paced treadmill desk usage elicited significantly higher EE than self-paced pedal desk usage in men but not in women. Both pedal and treadmill desk usage at self-selected intensities elicited approximate 2-fold increases in EE above what would typically be expected during traditional seated office work.

Restricted access

Dac Minh Tuan Nguyen, Virgile Lecoultre, Yoshiyuki Sunami and Yves Schutz

Background:

Physical activity (PA) and related energy expenditure (EE) is often assessed by means of a single technique. Because of inherent limitations, single techniques may not allow for an accurate assessment both PA and related EE. The aim of this study was to develop a model to accurately assess common PA types and durations and thus EE in free-living conditions, combining data from global positioning system (GPS) and 2 accelerometers.

Methods:

Forty-one volunteers participated in the study. First, a model was developed and adjusted to measured EE with a first group of subjects (Protocol I, n = 12) who performed 6 structured and supervised PA. Then, the model was validated over 2 experimental phases with 2 groups (n = 12 and n = 17) performing scheduled (Protocol I) and spontaneous common activities in real-life condition (Protocol II). Predicted EE was compared with actual EE as measured by portable indirect calorimetry.

Results:

In protocol I, performed PA types could be recognized with little error. The duration of each PA type could be predicted with an accuracy below 1 minute. Measured and predicted EE were strongly associated (r = .97, P < .001).

Conclusion:

Combining GPS and 2 accelerometers allows for an accurate assessment of PA and EE in free-living situations.

Restricted access

Leslie Peacock, Allan Hewitt, David A. Rowe and Rona Sutherland

Purpose:

The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults.

Methods:

Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials.

Results:

Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p < .01) on walking intensity.

Conclusions:

Healthy older adults achieve MVPA with stride rates that fall below published minima for MVPA. Stride rate, age, and height are significant predictors of energy expenditure in this population. Music can be a useful way to guide walking cadence.

Restricted access

Akiko Sato, Yoshimitsu Shimoyama, Tomoji Ishikawa and Nobuko Murayama

The purpose of this study was to examine the effect of high-intensity physical activity during training on the biochemical status of thiamin and riboflavin in athletes. Thiamin and riboflavin concentrations in whole blood of a group of 19 athletes (6 men and 13 women) were measured during a low-intensity preparatory period and compared with measurements taken during a high-intensity training period. Additional variables measured included anthropometric characteristics, estimated energy expenditure during swim training, distance covered, resting energy expenditure obtained by indirect calorimetry, estimated energy requirement per day, and dietary intake of energy, thiamin, and riboflavin estimated from 3-day food records. For both male and female subjects, no major changes were observed in anthropometric characteristics or dietary intake, but energy expenditure during swim training per day significantly increased in the intensive-training period (496 ± 0 kcal in the preparation period compared with 995 ± 96 kcal in the intensive-training period for male subjects [p < .001] and 361 ± 27 kcal vs. 819 ± 48 kcal, respectively, for female subjects [p < .001]). Blood thiamin concentration decreased significantly during the intensive-training period compared with the preparation period (41 ± 6 ng/ml decreased to 36 ± 3 ng/ml for male subjects [p = .048], and 38 ± 10 ng/ml decreased to 31 ± 5 ng/ml for female subjects [p = .004]); however, the concentration of riboflavin was unchanged. These results suggest that intense training affects thiamin concentration, but not riboflavin concentration, in the whole blood of college swimmers.

Restricted access

Orjan Ekblom, Gisela Nyberg, Elin Ekblom Bak, Ulf Ekelund and Claude Marcus

Background:

Wrist-worn accelerometers may provide an alternative to hip-worn monitors for assessing physical activity as they are easier to wear and may thus facilitate long-term recordings. The current study aimed at a) assessing the validity of the Actiwatch (wrist-worn) for estimating energy expenditure, b) determining cut-off values for light, moderate, and vigorous activities, c) studying the comparability between the Actiwatch and the Actigraph (hip-worn), and d) assessing reliability.

Methods:

For validity, indirect calorimetry was used as criterion measure. ROC-analyses were applied to identify cut-off values. Comparability was tested by simultaneously wearing of the 2 accelerometers during free-living condition. Reliability was tested in a mechanical shaker.

Results:

All-over correlation between accelerometer output and energy expenditure were found to be 0.80 (P < .001).Based on ROC-analysis, cut-off values for 1.5, 3, and 6 METs were found to be 80, 262, and 406 counts per 15 s, respectively. Energy expenditure estimates differed between the Actiwatch and the Actigraph (P < .05). The intra- and interinstrument coefficient of variation of the Actiwatch ranged between 0.72% and 8.4%.

Conclusion:

The wrist-worn Actiwatch appears to be valid and reliable for estimating energy expenditure and physical activity intensity in children aged 8 to 10 years.