Search Results

You are looking at 41 - 50 of 84 items for :

  • "cryotherapy" x
Clear All
Restricted access

Haydee G. Galvan, Amanda J. Tritsch, Richard Tandy and Mack D. Rubley


Ice-bath temperatures range from 1 to 15ºC; the pain response during treatment might be temperature specific.


To determine levels of perceived pain during ice-bath immersion at distinct temperatures.


2 (sex) × 3 (temperature) × 9 (treatment time).


Athletic training research laboratory.


32 healthy subjects.


Ankle immersion in 1, 10, and 15°C ice baths for 20 minutes.

Main Outcome Measures:

Discomfort measured by the Borg scale of perceived pain at immersion for 1, 2, 4, 6, 8, 10, 15, and 20 minutes.


The magnitude of pain felt depended on treatment temperature (F 18,522 = 11.65, P < .0001). Pain ratings were 43% higher for 1ºC than 10ºC and 70% higher than 15ºC, and ratings at 10ºC were 46% higher than at 15ºC.


Pain depends on treatment temperature. Patients might report inconsistent pain ratings with varying temperature.

Restricted access

Shona L. Halson, Marc J. Quod, David T. Martin, Andrew S. Gardner, Tammie R. Ebert and Paul B. Laursen

Cold water immersion (CWI) has become a popular means of enhancing recovery from various forms of exercise. However, there is minimal scientific information on the physiological effects of CWI following cycling in the heat.


To examine the safety and acute thermoregulatory, cardiovascular, metabolic, endocrine, and inflammatory responses to CWI following cycling in the heat.


Eleven male endurance trained cyclists completed two simulated ~40-min time trials at 34.3 ± 1.1°C. All subjects completed both a CWI trial (11.5°C for 60 s repeated three times) and a control condition (CONT; passive recovery in 24.2 ± 1.8°C) in a randomized cross-over design. Capillary blood samples were assayed for lactate, glucose, pH, and blood gases. Venous blood samples were assayed for catecholamines, cortisol, testosterone, creatine kinase, C-reactive protein, IL-6, and IGF-1 on 7 of the 11 subjects. Heart rate (HR), rectal (Tre), and skin temperatures (Tsk) were measured throughout recovery.


CWI elicited a significantly lower HR (CWI: Δ116 ± 9 bpm vs. CONT: Δ106 ± 4 bpm; P = .02), Tre (CWI: Δ1.99 ± 0.50°C vs. CONT: Δ1.49 ± 0.50°C; P = .01) and Tsk. However, all other measures were not significantly different between conditions. All participants subjectively reported enhanced sensations of recovery following CWI.


CWI did not result in hypothermia and can be considered safe following high intensity cycling in the heat, using the above protocol. CWI significantly reduced heart rate and core temperature; however, all other metabolic and endocrine markers were not affected by CWI.

Restricted access

Wigand Poppendieck, Oliver Faude, Melissa Wegmann and Tim Meyer


Cooling after exercise has been investigated as a method to improve recovery during intensive training or competition periods. As many studies have included untrained subjects, the transfer of those results to trained athletes is questionable.


Therefore, the authors conducted a literature search and located 21 peer-reviewed randomized controlled trials addressing the effects of cooling on performance recovery in trained athletes.


For all studies, the effect of cooling on performance was determined and effect sizes (Hedges’ g) were calculated. Regarding performance measurement, the largest average effect size was found for sprint performance (2.6%, g = 0.69), while for endurance parameters (2.6%, g = 0.19), jump (3.0%, g = 0.15), and strength (1.8%, g = 0.10), effect sizes were smaller. The effects were most pronounced when performance was evaluated 96 h after exercise (4.3%, g = 1.03). Regarding the exercise used to induce fatigue, effects after endurance training (2.4%, g = 0.35) were larger than after strength-based exercise (2.4%, g = 0.11). Cold-water immersion (2.9%, g = 0.34) and cryogenic chambers (3.8%, g = 0.25) seem to be more beneficial with respect to performance than cooling packs (−1.4%, g= −0.07). For cold-water application, whole-body immersion (5.1%, g = 0.62) was significantly more effective than immersing only the legs or arms (1.1%, g = 0.10).


In summary, the average effects of cooling on recovery of trained athletes were rather small (2.4%, g = 0.28). However, under appropriate conditions (whole-body cooling, recovery from sprint exercise), postexercise cooling seems to have positive effects that are large enough to be relevant for competitive athletes.

Restricted access

J. Ty Hopkins and Christopher D. Ingersoll


To define the concept of arthrogenic muscle inhibition (AMI), to discuss its implications in the rehabilitation of joint injury, to discuss the neurophysiologic events that lead to AMI, to evaluate the methods available to measure AM1 and the models that might be implemented to examine AMI, and to review therapeutic interventions that might reduce AMI.

Data Sources:

The databases MEDLINE, SPORTDiscus, and CIHNAL were searched with the terms reflex inhibition, joint mechanoreceptor, Ib interneuron, Hoffmann reflex, effusion, and joint injury. The remaining citations were collected from references of similar papers.


AMI is a limiting factor in the rehabilitation of joint injury. It results in atrophy and deficiencies in strength and increases the susceptibility to further injury. A therapeutic intervention that results in decreased inhibition, allowing for active exercise, would lead to faster and more complete recovery.

Restricted access

Jeffrey R. Doeringer, Megan Colas, Corey Peacock and Dustin R. Gatens

likelihood that microscopic tears in the muscle tissue, which cause inflammation, will then lead to delayed onset muscle soreness. 4 Cryotherapy has been consistently used for relief of these symptoms, including pain associated with musculoskeletal injuries. 1 The physiological response to cryotherapy is

Restricted access

Robert Vallandingham, Zachary Winkelmann, Lindsey Eberman and Kenneth Games

recommendations, clinicians should deploy a myriad of tasks, as outlined in Table  1 . 6 Table 1 Recommendations Set Forth in the Position Statement Treatment Recommendations Other Interventions Return-to-Play Considerations Cryotherapy Range of motion Patient-reported outcome measures (PROMs) Compression

Restricted access

Mitchell Naughton, Joanna Miller and Gary J. Slater

on modulating aspects of primary ultrastructural damage and/or the secondary inflammation response (Figure  1 ) to assist recovery. Strategies identified to improve aspects of recovery following EIMD include cryotherapy modalities, 10 , 35 hydrotherapies, 36 , 37 compression garments, 38 and

Restricted access

Kyle Southall, Matt Price and Courtney Wisler

which had not improved with conservative treatment, the athlete was diagnosed with MLL characterized by a space created between the fascia layers that allows an increase in superficial swelling caused by a shearing blunt force to the area. The team physician suggested continuation of cryotherapy and

Restricted access

Caroline E. Penderghest, Iris F. Kimura and Dawn T. Gulick

The purpose of this study was to determine the clinical efficacy of dexametha-sone-lidocaine (DX-L) phonophoresis on perceived pain associated with symptomatic tendinitis. Twenty-four subjects were randomly assigned to a DX-L or placebo phoresis group. All subjects received strengthening, stretching, and cryotherapy. Five double-blind sessions were administered over a 5- to 10-day period, with 24 to 48 hr between sessions. Perceived pain was quantified using a visual perceived pain scale (VPPS) and a punctate tenderness gauge (PTG). Data were collected before stretching, strengthening, and DX-L/placebo phoresis treatments, 1 min after treatment, and 10 min after cryotherapy. There were no significant differences for VPPS or PTG between groups. There was a significant difference between treatment sessions, regardless of group or test, and there were significant decreases in perceived pain between Tests 1 and 3 and between Treatment Sessions 1 and 5. It was concluded that stretching, strengthening, and cryotherapy significantly decreased the levels of perceived pain associated with symptomatic tendinitis regardless of whether the subjects received phonophoresis.

Restricted access

Kevin M. Guskiewicz, Gregory G. Degnan and Thomas L. Schildwachter

Ligamentous injuries of the wrist and hand are the most common upper extremity injuries seen in young athletes. Unfortunately, these injuries are also the most frequently misdiagnosed. The “sprained wrist” often becomes the diagnosis of convenience, especially once a fracture has been ruled out. In many cases the athlete is treated symptomatically with cryotherapy, immobilization, and rest, and returns to activity as pain allows. Concern, however, has increased recently over potential complications related to associated ligamentous injuries in young athletes. The most common recognized, carpal instability is between the scaphoid and the lunate, the so-called scapholunate dissociation (3).