Search Results

You are looking at 41 - 50 of 249 items for :

  • "muscle damage" x
Clear All
Restricted access

Matthew David Cook, Stephen David Myers, John Stephen Michael Kelly and Mark Elisabeth Theodorus Willems

Impaired glucose tolerance was shown to be present 48 hr following muscle-damaging eccentric exercise. We examined the acute effect of concentric and muscle-damaging eccentric exercise, matched for intensity, on the responses to a 2-hr 75-g oral glucose tolerance test (OGTT). Ten men (27 ± 9 years, 178 ± 7 cm, 75 ± 11 kg, VO2max: 52.3 ± 7.3 ml·kg-1·min-1) underwent three OGTTs after an overnight 12 hr fast: rest (control), 40-min (5 × 8-min with 2-min interbout rest) of concentric (level running, 0%, CON) or eccentric exercise (downhill running, –12%, ECC). Running intensity was matched at 60% of maximal metabolic equivalent. Maximal isometric force of m. quadriceps femoris of both legs was measured before and after the running protocols. Downhill running speed was higher (level: 9.7 ± 2.1, downhill: 13.8 ± 3.2 km·hr-1, p < .01). Running protocols had similar VO2max (p = .59), heart rates (p = .20) and respiratory exchange ratio values (p = .74) indicating matched intensity and metabolic demands. Downhill running resulted in higher isometric force deficits (level: 3.0 ± 6.7, downhill: 17.1 ± 7.3%, p < .01). During OGTTs, area-under-the-curve for plasma glucose (control: 724 ± 97, CON: 710 ± 77, ECC: 726 ± 72 mmol·L-1·120 min, p = .86) and insulin (control: 24995 ± 11229, CON: 23319 ± 10417, ECC: 21842 ± 10171 pmol·L-1·120 min, p = .48), peak glucose (control: 8.1 ± 1.3, CON: 7.7 ± 1.2, ECC: 7.7 ± 1.1 mmol·L-1, p = .63) and peak insulin levels (control: 361 ± 188, CON: 322 ± 179, ECC: 299 ± 152 pmol·L-1, p = .30) were similar. It was concluded that glucose tolerance and the insulin response to an OGTT were not changed immediately by muscle-damaging eccentric exercise.

Restricted access

Vitor Teixeira, Hugo Valente, Susana Casal, Franklim Marques and Pedro Moreira

Strenuous physical activity is known to generate reactive oxygen species to a point that can exceed the antioxidant defense system and lead to oxidative stress. Dietary intake of antioxidants, plasma enzymatic (superoxide dismutase, glutathione reductase [Gr], and glutathione peroxidase [GPx]) activities, nonenzymatic (total antioxidant status [TAS], uric acid, α-tocopherol, retinol, α-carotene, β-carotene, lycopene, and lutein + zeaxanthin) antioxidants, and markers of lipid peroxidation (thiobarbituricacid-reactive substances [TBARS]) and muscle damage (creatine kinase [CK]) were measured in 17 elite male kayakers and canoeists under resting conditions and in an equal number of age- and sex-matched sedentary individuals. Athletes showed increased plasma values of α-tocopherol (p = .037), α-carotene (p = .003), β-carotene (p = .007), and superoxide dismutase activity (p = .002) and a lower TAS level (p = .030). Antioxidant intake (α-tocopherol, vitamin C, and β-carotene) and plasmatic GPx, Gr, lycopene, lutein + zeaxanthin, retinol, and uric acid levels were similar in both groups. Nevertheless, TBARS (p < .001) and CK (p = .011) levels were found to be significantly higher in the kayakers and canoeists. This work suggests that despite the enhanced levels of antioxidants, athletes undergoing regular strenuous exercise exhibited more oxidative stress than sedentary controls.

Restricted access

Nicholas D. Luden, Michael J. Saunders and M. Kent Todd

The authors investigated the effects of postexercise carbohydrate-protein-anti-oxidant (CHO+P+A) ingestion on plasma creatine kinase (CK), muscle soreness, and subsequent cross-country race performance. Twenty-three runners consumed 10 mL/kg body weight of CHO or CHO+P+A beverage immediately after each training session for 6 d before a cross-country race. After a 21-d washout period, subjects repeated the protocol with the alternate beverage. Post intervention CK (223.21 ± 160.71 U/L; 307.3 ± 312.9 U/L) and soreness (medians = 1.0, 2.0) were significantly lower after CHO+P+A intervention than after CHO, despite no differences in baseline measures. There were no overall differences in running performance after CHO and CHO+P+A interventions. There were, however, significant correlations between treatment differences and running mileage, with higher mileage runners having trends toward improved attenuations in CK and race performance after CHO+P+A intervention than lower mileage runners. We conclude that muscle damage incurred during training was attenuated with postexercise CHO+P+A ingestion, which could lead to performance improvements in high-mileage runners.

Restricted access

Paul W.M. Marshall, Ric Lovell and Jason C. Siegler

Purpose:

Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation.

Methods:

Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period.

Results:

Reductions in passive stiffness of 20–50° of passive hip flexion of 22.1−29.2% (P < .05) were observed after the warm-up period. During the SAFT90, passive tension increased in the latter 20% of the range of motion of 10.1−10.9% (P < .05) concomitant to a 4.5% increase in total hamstring ROM (P = .0009).

Conclusions:

The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.

Restricted access

Jonathan D.C. Leeder, Ken A. van Someren, David Gaze, Andrew Jewell, Nawed I.K. Deshmukh, Iltaf Shah, James Barker and Glyn Howatson

Purpose:

This investigation aimed to ascertain a detailed physiological profile of recovery from intermittentsprint exercise of athletes familiar with the exercise and to investigate if athletes receive a protective effect on markers of exercise-induced muscle damage (EIMD), inflammation, and oxidative stress after a repeated exposure to an identical bout of intermittent-sprint exercise.

Methods:

Eight well-trained male team-sport athletes of National League or English University Premier Division standard (mean ± SD age 23 ± 3 y, VO2max 54.8 ± 4.6 mL · kg−1 · min−1) completed the Loughborough Intermittent Shuttle Test (LIST) on 2 occasions, separated by 14 d. Maximal isometric voluntary contraction (MIVC), countermovement jump (CMJ), creatine kinase (CK), C-reactive protein (CRP), interleukin-6 (IL-6), F2-isoprostanes, and muscle soreness (DOMS) were measured before and up to 72 h after the initial and repeated LISTs.

Results:

MIVC, CMJ, CK, IL-6, and DOMS all showed main effects for time (P < .05) after the LIST, indicating that EIMD was present. DOMS peaked at 24 h after LIST 1 (110 ± 53 mm), was attenuated after LIST 2 (56 ± 39 mm), and was the only dependent variable to demonstrate a reduction in the second bout (P = .008). All other markers indicated that EIMD did not differ between bouts.

Conclusion:

Well-trained games players experienced EIMD after exposure to both exercise tests, despite being accustomed to the exercise type. This suggests that well-trained athletes receive a very limited protective effect from the first bout.

Restricted access

Yoshiharu Shimomura, Asami Inaguma, Satoko Watanabe, Yuko Yamamoto, Yuji Muramatsu, Gustavo Bajotto, Juichi Sato, Noriko Shimomura, Hisamine Kobayashi and Kazunori Mawatari

The authors examined the effect of branched-chain amino acid (BCAA) supplementation on squat-exercise-induced delayed-onset muscle soreness (DOMS) using 12 young, healthy, untrained female participants. The experiment was conducted with a crossover double-blind design. In the morning on the exercise-session day, the participants ingested either BCAA (isoleucine:leucine:valine = 1:2.3:1.2) or dextrin at 100 mg/kg body weight before the squat exercise, which consisted of 7 sets of 20 squats/set with 3-min intervals between sets. DOMS showed a peak on Days 2 and 3 in both trials, but the level of soreness was significantly lower in the BCAA trial than in the placebo. Leg-muscle force during maximal voluntary isometric contractions was measured 2 d after exercise (Day 3), and the BCAA supplementation suppressed the muscle-force decrease (to ~80% of the value recorded under the control conditions) observed in the placebo trial. Plasma BCAA concentrations, which decreased after exercise in the placebo trial, were markedly elevated during the 2 hr postexercise in the BCAA trial. Serum myoglobin concentration was increased by exercise in the placebo but not in the BCAA trial. The concentration of plasma elastase as an index of neutrophil activation appeared to increase after the squat exercise in both trials, but the change in the elastase level was significant only in the placebo trial. These results suggest that muscle damage may be suppressed by BCAA supplementation.

Restricted access

Kelle F. T. Veggi, Marco Machado, Alexander J. Koch, Sandro C. Santana, Sedison S. Oliveira and Michael J. Stec

Purpose:

We examined the effects of creatine supplementation on the response to repeated bouts of resistance exercise.

Methods:

Young men (24.1 ± 5.2 yr) were divided into Creatine (CM, n = 9) and Placebo (PL, n = 9) groups. On day (D) 1 and D15, subjects performed four sets of bicep curls at 75% 1-RM to concentric failure. On D8-D13, subjects consumed either 20g/d creatine monohydrate or placebo. Muscle soreness and elbow joint range of motion (ROM) were assessed on D1-D5 and D15-D19. Serum creatine kinase activity (CK) was assessed on D1, D3, D5, D15, D17, and D19.

Results:

The first exercise bout produced increases in muscle soreness and CK, and decreases in ROM in both groups (p < .001). The second bout produced lesser rises in serum CK, muscle soreness, and a lesser decrease in ROM (bout effect, p < .01 for all), with greater attenuation of these damage markers in CM than PL. CK levels on D17 were lower (+110% over D15 for CM vs. +343% for PL), muscle soreness from D15–19 was lower (–75% for CM vs. –56% for PL compared with first bout), and elbow ROM was decreased in PL, but not CM on D16 (p < .05 for all).

Conclusions:

Creatine supplementation provides an additive effect on blunting the rise of muscle damage markers following a repeated bout of resistance exercise. The mechanism by which creatine augments the repeated bout effect is unknown but is likely due to a combination of creatine’s multifaceted functions.

Restricted access

José M.C. Soares, Paulo Mota, José A. Duarte and Hans J. Appell

The aim of the present study was to investigate whether children showed similar signs of muscle overuse like adults after intense exercise. One child group (n = 10) and one adult group (n = 10) of males both had to perform five series of bench press exercises at an intensity of 80% of maximum strength until exhaustion. Maximum isometric strength, subjective perception of muscle pain, was measured before, immediately after, 48 hr, 72 hr, and 1 week after the exercise. Serum creatine kinase (CK) activity was measured before, 48 hr, 72 hr, and 1 week after the exercise. The adults showed all symptoms of muscle overuse: reduced strength, muscle pain, and elevated CK activities until 3 days after the exercise. In contrast, the children experienced only some light muscle pain, but neither showed reduced strength nor elevated CK activities. It is concluded that children’s muscles can easier withstand physical stress than adult muscles.

Restricted access

Borut Fonda and Nejc Sarabon

It has been reported in practice that the application of lower-body negative pressure (LBNP) to elite athletes during periods of intense training can help aid recovery.

Purpose:

To examine the effects of LBNP on biochemical, pain, and performance parameters during a 5-d recovery period after a damaging plyometric-exercise bout.

Design:

Randomized controlled study.

Methods:

24 healthy young female adults were randomly allocated into 2 groups. Before and 1, 24, 48, and 96 h after the damaging exercise for hamstrings (50 drop jumps and 50 leg curls), participants underwent a series of tests (blood samples, pain sensation, countermovement jump, maximal isometric torque production, maximal explosive isometric torque production, and 10-m sprint). After the damaging exercise, the experimental group was exposed to intermittent LBNP therapy daily for 60 min.

Results:

There was a statistically significant interaction (P < .05) between the experimental and control groups for maximal strength, explosive strength, pain sensation, and vertical jumps (maximal power and force). No statistically significant interaction was present for the biochemical markers, jump height, and 100-m sprint.

Conclusions:

LBNP therapy could improve recovery by limiting the loss in muscle strength and power and limiting the presence of pain.

Restricted access

Tom Clifford, Will Abbott, Susan Y. Kwiecien, Glyn Howatson and Malachy P. McHugh

It is well established that a soccer match can induce muscle damage that persists for several days. 1 – 3 Typically, this muscle damage manifests as increased feelings of muscle soreness (MS) and a reduced force-generating capacity, both of which can increase the risk of injury 4 and negatively