Search Results

You are looking at 41 - 50 of 179 items for :

  • "post-exercise" x
Clear All
Restricted access

Ben Desbrow, Danielle Cecchin, Ashleigh Jones, Gary Grant, Chris Irwin and Michael Leveritt

The addition of 25 mmol·L−1 sodium to low alcohol (2.3% ABV) beer has been shown to enhance post exercise fluid retention compared with full strength (4.8% ABV) beer with and without electrolyte modification. This investigation explored the effect of further manipulations to the alcohol and sodium content of beer on fluid restoration following exercise. Twelve male volunteers lost 2.03 ± 0.19% body mass (mean ± SD) using cycling-based exercise. Participants were then randomly allocated a different beer to consume on four separate occasions. Drinks included low alcohol beer with 25 mmol·L−1 of added sodium [LightBeer+25], low alcohol beer with 50 mmol·L−1 of added sodium [LightBeer+50], midstrength beer (3.5% ABV) [Mid] or midstrength beer with 25 mmolL−1 of added sodium [Mid+25]. Total drink volumes in each trial were equivalent to 150% of body mass loss during exercise, consumed over a 1h period. Body mass, urine samples and regulatory hormones were obtained before and 4 hr after beverage consumption. Total urine output was significantly lower in the LightBeer+50 trial (1450 ± 183 ml) compared with the LightBeer+25 (1796 ± 284 ml), Mid+25 (1786 ± 373 ml) and Mid (1986 ± 304 ml) trials (allp < .05). This resulted in significantly higher net body mass following the LightBeer+50 trial (-0.97 ± 0.17kg) compared with all other beverages (LightBeer+25 (-1.30 ± 0.24 kg), Mid+25 (-1.38 ± 0.33 kg) and Mid (-1.58 ± 0.29 kg), all p < .05). No significant changes to aldosterone or vasopressin were associated with different drink treatments. The electrolyte concentration of low alcohol beer appears to have more significant impact on post exercise fluid retention than small changes in alcohol content.

Restricted access

Melissa J. Benton and Pamela D. Swan

Research suggests that ingesting protein after resistance exercise (RE) increases muscle protein synthesis and results in greater muscle gains. The effect on energy expenditure and substrate utilization, however, is unclear. This study evaluated the effect of RE and post exercise protein on recovery energy expenditure and substrate utilization in 17 women (age 46.5 ± 1.2 y). A whey-protein supplement (120 kcal, 30 g protein) was ingested immediately after 1 bout of RE (PRO) and a non caloric placebo after another (PLA). VO2 and respiratory-exchange ratio (RER) were measured before and for 120 min after each exercise session. RE resulted in a significant increase in VO2 that persisted through 90 min of recovery (P < 0.01) and was not affected by protein supplementation. RE significantly lowered RER, resulting in an increase in fat oxidation for both PLA and PRO (P < 0.01). For PRO, however, RER returned to baseline values earlier than for PLA, resulting in a reduced fat-oxidation response (P = 0.02) and earlier return to pre exercise baseline values than for PLA. Substrate utilization was significantly different between conditions (P = 0.02), with fat contributing 77.76% ± 2.19% for PLA and 72.12% ± 2.17% for PRO, while protein oxidation increased from 17.18% ± 1.33% for PLA to 20.82% ± 1.47% for PRO. Post exercise protein did not affect energy expenditure, but when protein was available as an alternate fuel fat oxidation was diminished. Based on these findings it might be beneficial for middle-aged women to delay protein intake after RE to maximize fat utilization.

Restricted access

Michael J. Saunders

Endurance athletes commonly consume carbohydrate-electrolyte sports beverages during prolonged events. The benefits of this strategy are numerous—sports-beverage consumption during exercise can delay dehydration, maintain blood glucose levels, and potentially attenuate muscle glycogen depletion and central fatigue. Thus, it is generally agreed that carbohydrate-electrolyte beverages can improve endurance performance. A controversy has recently emerged regarding the potential role of protein in sports beverages. At least 3 recent studies have reported that carbohydrate-protein ingestion improves endurance performance to a greater extent than carbohydrate alone. In addition, carbohydrate-protein ingestion has been associated with reductions in markers of muscle damage and improved post exercise recovery. Although many of these muscle damage and recovery studies examined post exercise nutritional intake, recent evidence suggests that these benefits may be elicited with carbohydrate-protein consumption during exercise. These findings are intriguing and suggest that the importance of protein for endurance athletes has been underappreciated. However, 2 studies recently reported no differences in endurance performance between carbohydrate and carbohydrate-protein beverages. The varied outcomes may have been influenced by a number of methodological differences, including the amounts and types of carbohydrate or protein in the beverages, the exercise protocols, and the relative statistical power of the studies. In addition, although there are plausible mechanisms that could explain the ergogenic effects of carbohydrate-protein beverages, they remain relatively untested. This review examines the existing research regarding the efficacy of carbohydrate-protein consumption during endurance exercise. Limitations of the existing research are addressed, as well as potential areas for future study.

Restricted access

Michael J. Cramer, Charles L. Dumke, Walter S. Hailes, John S. Cuddy and Brent C. Ruby

A variety of dietary choices are marketed to enhance glycogen recovery after physical activity. Past research informs recommendations regarding the timing, dose, and nutrient compositions to facilitate glycogen recovery. This study examined the effects of isoenergetic sport supplements (SS) vs. fast food (FF) on glycogen recovery and exercise performance. Eleven males completed two experimental trials in a randomized, counterbalanced order. Each trial included a 90-min glycogen depletion ride followed by a 4-hr recovery period. Absolute amounts of macronutrients (1.54 ± 0.27 g·kg-1 carbohydrate, 0.24 ± 0.04 g·kg fat-1, and 0.18 ± 0.03g·kg protein-1) as either SS or FF were provided at 0 and 2 hr. Muscle biopsies were collected from the vastus lateralis at 0 and 4 hr post exercise. Blood samples were analyzed at 0, 30, 60, 120, 150, 180, and 240 min post exercise for insulin and glucose, with blood lipids analyzed at 0 and 240 min. A 20k time-trial (TT) was completed following the final muscle biopsy. There were no differences in the blood glucose and insulin responses. Similarly, rates of glycogen recovery were not different across the diets (6.9 ± 1.7 and 7.9 ± 2.4 mmol·kg wet weight- 1·hr-1 for SS and FF, respectively). There was also no difference across the diets for TT performance (34.1 ± 1.8 and 34.3 ± 1.7 min for SS and FF, respectively. These data indicate that short-term food options to initiate glycogen resynthesis can include dietary options not typically marketed as sports nutrition products such as fast food menu items.

Restricted access

Paula Robson-Ansley, Martin Barwood, Clare Eglin and Les Ansley

Fatigue is a predictable outcome of prolonged physical activity; yet its biological cause remains uncertain. During exercise, a polypeptide messenger molecule inter-leukin-6 (IL-6) is actively produced. Previously, it has been demonstrated that administration of recombinant IL-6 (rhIL-6) impairs 10-km run performance and heightened sensation of fatigue in trained runners. Both high carbohydrate diets and carbohydrate ingestion during prolonged exercise have a blunting effect on IL-6 levels post endurance exercise. We hypothesized that carbohydrate ingestion may improve performance during a prolonged bout of exercise as a consequence of a blunted IL-6 response. Seven recreationally trained fasted runners completed two 90-min time trials under CHO supplemented and placebo conditions in a randomized order. The study was of a double-blinded, placebo-controlled, cross-over study design. Distance covered in 90 min was significantly greater following exogenous carbohydrate ingestion compared with the placebo trial (19.13 ± 1.7 km and 18.29 ± 1.9 km, respectively, p = .0022). While post exercise IL-6 levels were significantly lower in the CHO trial compared with the placebo trial (5.3 ± 1.9 pg·mL−1 and 6.6 ± 3.0 pg·mL−1, respectively; p = .0313), this difference was considered physiologically too small to mediate the improvement in time trial performance.

Restricted access

Andrea D. Marjerrison, Jonah D. Lee and Anthony D. Mahon

This study examined the effect of pre exercise carbohydrate (CHO) feeding on performance on a Wingate anaerobic test (WAnT) in 11 boys (10.2 ± 1.3 y old). Four WAnTs with 2 min recovery were performed 30 min after consuming a CHO (1 g CHO/kg) or placebo drink. Peak power (PP) and mean power (MP) were similar between trials. PP ranged from 241.1 ± 82.2 to 223.1 ± 57.9 W with carbohydrate and from 238.2 ± 76.1 to 223.4 ± 52.3 W with placebo. MP ranged from 176.3 ± 58.4 to 151.1 ± 37.5 W with carbohydrate versus 178.0 ± 45.8 to 159.1 ± 32.7 W with placebo. Pre exercise glucose was significantly higher in CHO versus placebo (7.0 ± 1.0 vs. 5.5 ± 0.5 mmol/L), but post exercise values were not different. Blood lactate was similar between trials but increased over time. This study found that the ingestion of a CHO solution before exercise did not influence power output during repeated performances of the WAnT.

Restricted access

Stacie L. Wing-Gaia, Andrew W. Subudhi and Eldon W. Askew

The purpose of this study was to assess the effects of purified oxygenated water on exercise performance under hypoxic conditions. Nine recreational male cyclists (age = 26.6 ± 5.2 y, weight = 87.6 ± 19.5 kg, VO2peak = 46.5 ± 5.9 mL · kg−1 · min−1) completed two 600 kJ cycling time trials under hypoxic conditions (FIO2 = 13.6% O2, Pbar = 641 mmHg) separated by 2 wk. Trials were completed following 3 d ingestion of 35 mL · kg−1 · d−1 of control (CON) or experimental (EXP) water. Time to completion, heart rate (HR), rate of perceived exertion (RPE), pulse oximetry (SaO2), blood gases (PcO2 and PcCO2), and lactate were measured during the trials. Hydration was assessed with pre- and post-exercise body weight and 24-h urine specific gravity. Performance, hydration, and blood oxygenation were unaffected by EXP water. Results of this study suggest that purified oxygenated water does not improve exercise performance in moderately active males.

Restricted access

Elaine M. Murtagh, Colin Boreham, Alan Nevill, Gareth Davison, Tom Trinick, Ellie Duly, Mawloud El-Agnaf and Marie H. Murphy

Background:

Markers of inflammation are emerging as novel indices of cardiovascular risk. These markers have been shown to alter acutely after intense exercise; however, the effects of more moderate intensity exercise in healthy individuals is not known. Walking forms a cornerstone of physical activity promotion, so the inflammatory response to this exercise merits investigation. This study evaluated the effects of a 45-min walk on C-reactive protein (CRP) and interleukin 6 (IL-6), in sedentary, overweight men.

Methods:

Fifteen men (49.7 ± 5.9 y) walked for 45 min at 60 to 70% of predicted maximum heart rate. Fasted blood samples were taken prior to and immediately 1 hr and 24 h post-walk.

Results:

IL-6 decreased from 1 h post-walk to 24 h post-walk (P < 0.01). No significant changes were observed in CRP.

Conclusions:

These findings suggest that 45 min walking at 60 to 70% HRmax-p causes a decrease in IL-6 24 h post-exercise, but does not evoke a significant response in CRP levels.

Restricted access

Stephen Hill, Wesley Box and Robert A. DiSilvestro

Lipid peroxides can be both a product and an initiator of oxidant stress. Conceivably, exercise can either increase concentrations of lipid peroxides (by causing oxidant stress), or decrease them (by accelerating peroxide breakdown). The net effect could depend on exercise intensity and nutritional intake of antioxidants. The present study examined the response of serum lipid peroxides to the combination of moderate intensity, weight resistance exercise plus intake of soy protein, a source of antioxidant phytochemicals. Recreationally trained, young adult men (N = 18) consumed soy protein or antioxidant-poor whey protein for 4 weeks (40 g protein/d) before a session of moderate intensity, weight resistance exercise. In the soy group, exercise decreased values for serum lipid peroxides at 5 min, 3 h, and 24 h post-exercise. The whey group showed the depression only at 24 h. In both the soy and whey groups, a small rise was seen for interleukin-8, which is consistent with the idea that the exercise session induced a moderate muscle stress. In summary, a moderate intensity, weight resistance exercise session, despite inducing mild inflammation, depressed plasma serum peroxide values, especially when combined with 4 weeks of soy consumption.

Restricted access

Nicola C. Sutton, David J. Childs, Oded Bar-Or and Neil Armstrong

The purpose of this study was to develop a nonmotorized treadmill sprint test (ExNMT) to assess children’s short-term power output, to establish the test’s repeatability, and to compare the results to corresponding Wingate anaerobic test (WAnT) measurements. Nineteen children (aged 10.9±0.3 years) completed 2 ExNMTs and 2 WAnTs. Statistical analysis revealed coefficients of repeatability for the ExNMT that compared very favorably with the WAnT for both peak power (26.6 vs. 44.5 W) and mean power (15.3 vs. 42.1 W). The validity of the ExNMT as a test of anaerobic performance is reflected by significant correlations (p ≤.05) with the WAnT (peak power, r = 0.82; mean power, r = 0.88) and reinforced by the relatively high post-exercise blood lactate concentrations (7.1 ± 1.3 vs. 5.6 ± 1.5 mmol · L−1 for the ExNMT and WAnT, respectively). This study has developed a promising laboratory running test with which to examine young people’s short-term power output.