Search Results

You are looking at 41 - 50 of 686 items for :

Clear All
Restricted access

Jacob D. Meyer, Mary S. Hayney, Christopher L. Coe, Cameron L. Ninos and Bruce P. Barrett

, 2009 ; Rosenkranz, 2007 ; Wellen & Hotamisligil, 2005 ). Commonly employed measures include C-reactive protein (CRP) and interleukin-6 (IL-6), which respond acutely to infection or trauma but can also reflect subclinical pro-inflammatory activity. In addition, in clinical settings, interferon gamma

Restricted access

David S. Rowlands, Rhys M. Thorp, Karin Rossler, David F. Graham and Mike J. Rockell

Carbohydrate ingestion after prolonged strenuous exercise enhances recovery, but protein might also be important. In a crossover with 2-wk washout, 10 cyclists completed 2.5 h of intervals followed by 4-h recovery feeding, provided 218 g protein, 435 g carbohydrate, and 79 g fat (protein enriched) or 34 g protein, 640 g carbohydrate, and 79 g fat (isocaloric control). The next morning, cyclists performed 10 maximal constant-work sprints on a Velotron cycle ergometer, each lasting ~2.5 min, at ~5-min intervals. Test validity was established and test reliability and the individual response to the protein-enriched condition estimated by 6 cyclists’ repeating the intervals, recovery feeding, and performance test 2 wk later in the protein-enriched condition. During the 4-h recovery, the protein-enriched feeding had unclear effects on mean concentrations of plasma insulin, cortisol, and growth hormone, but testosterone was 25% higher (90% confidence limits, ± 14%). Protein enrichment also reduced plasma creatine kinase by 33% (±38%) the next morning and reduced tiredness and leg-soreness sensations during the sprints, but effects on mean sprint power were unclear (–1.4%, ±4.3%). The between-subjects trial-to-trial coefficient of variation in overall mean sprint power was 3.1% (±3.4%), whereas the variation in the protein-enriched condition was 5.9% (±6.9%), suggesting that individual responses to the protein-enriched treatment contributed to the unclear performance outcome. To conclude, protein-enriched recovery feeding had no clear effect on next-day performance.

Restricted access

Rochelle D. Kirwan, Lindsay K. Kordick, Shane McFarland, Denver Lancaster, Kristine Clark and Mary P. Miles

Purpose:

The purpose of this study was to determine the dietary, anthropometric, blood-lipid, and performance patterns of university-level American football players attempting to increase body mass during 8 wk of training.

Methods:

Three-day diet records, body composition (DEXA scan), blood lipids, and performance measures were collected in redshirt football players (N = 15, age 18.5 ± 0.6 yr) early season and after 8 wk of in-season training.

Results:

There was an increase (p < .05) from early-season to postseason testing for reported energy (+45%), carbohydrate (+82%), and protein (+29%) intakes and no change in the intake of fat. Fat intake was 41% of energy at the early-season test and 32% of energy at the postseason test. Increases (p < .05 for all) in performance measures, lean mass (70.5 ± 7.7–71.8 ± 7.7 kg), fat mass (15.9 ± 6.2–17.3 ± 6.8 kg), plasma total cholesterol (193.5 ± 32.4–222.6 ± 40.0 mg/dl), and low-density lipoproteins (LDL; 92.7 ± 32.7–124.5 ± 34.7 mg/dl) were measured. No changes were measured in triglycerides, very-low-density lipoproteins, or high-density lipoproteins.

Conclusion:

Increases in strength, power, speed, total body mass, muscle mass, and fat mass were measured. Cholesterol and LDL levels increased during the study to levels associated with higher risk for cardiovascular disease. It is possible that this is a temporary phenomenon, but it is cause for concern and an indication that dietary education to promote weight gain in a manner less likely to adversely affect the lipid profile is warranted.

Restricted access

Gabriella A.M. Ten Have, Marielle P.K.J. Engelen, Yvette C. Luiking and Nicolaas E.P. Deutz

The small intestine acts as interface and regulator between the gut lumen and the rest of the body and controls the degree and rate of transport of amino acids coming from dietary protein via the portal vein to the liver and the systemic circulation. To measure protein absorption, kinetics multicatheter animal (pig) models in combination with amino acid tracer technology are available. Dietary factors infuence the absorption rates from the lumen to the gut, metabolism of dietary component in the gut, and the release of amino acids to the portal circulation from digested protein. In a balanced-protein meal, the gut dietary amino acid utilization (30–50%) for gut protein synthesis will result in a labile protein pool in the gut that can be benefcial during the postabsorptive state. To enhance gut retention, amount and quality of protein and the presence of carbohydrate are major factors. Besides this the use of a slowly digestible protein or the presence of fber in the meal can increase retention further. During the absorption of low-quality protein meals, fewer amino acids are utilized by the gut, resulting in higher amounts of amino acid release to the portal circulation. Malnutrition or starvation, protein depletion, defciencies of specifc nutrients, or illness such as sepsis all inhibit the growth and change protein turnover of the intestinal mucosa and therefore affect absorption kinetics. Therefore, the kind of protein meal that has the most optimal absorption kinetics (the most benefcial) for gut and for the rest of the body depends on these (patho)physiological circumstances. Despite the absence of different absorption kinetics between protein, peptides, and amino acids, they could be benefcial in specifc circumstances.

Restricted access

Adam D. Osmond, Dean J. Directo, Marcus L. Elam, Gabriela Juache, Vince C. Kreipke, Desiree E. Saralegui, Robert Wildman, Michael Wong and Edward Jo

supplementation attenuated the decrease in maximal voluntary contraction (MVC) 3 days following unaccustomed squat exercise, indicating greater recovery of MVC compared with a dextrin control. This may be partly attributed to the proanabolic effects of exogenous BCAA on skeletal muscle protein metabolism. 9 , 10

Restricted access

Peter W.R. Lemon

The debate regarding optimal protein/amino acid needs of strength athletes is an old one. Recent evidence indicates that actual requirements are higher than those of more sedentaty individuals, although this is not widely recognized. Some data even suggest that high protein/amino acid diets can enhance the development of muscle mass and strength when combined with heavy resistance exercise training. Novices may have higher needs than experienced strength athletes, and substantial interindividual variability exists. Perhaps the most important single factor determining absolute protein/amino acid need is the adequacy of energy intake. Present data indicate that strength athletes should consume approximately 12-15% of their daily total energy intake as protein, or about 1.5-2.0 g protein/kg1 (approximately 188-250% of the U.S. recommended dietary allowance). Although routinely consumed by many strength athletes, higher protein intakes have not been shown to be consistency effective and may even be associated with some health risks.

Restricted access

Kevin R. Short and K. Sreekumaran Nair

Loss of muscle mass, strength, and oxidative capacity accompanies normal aging in humans. The mechanisms responsible for these changes remain to be clearly defined. Muscle protein mass and function depend on protein turnover. Synthesis rate of the major muscle contractile protein, myosin heavy chain (MHC), and transcript levels of fast MHC isoforms decrease in association with strength reductions, while mitochondrial protein synthesis rate declines in parallel with activities of mitochondrial enzymes and maximal oxidative capacity (V̇O2max). Resistance exercise training increases the synthesis rate of MHC and transcript levels of the slow MHC isoform in older humans, along with increasing muscle strength. The relationship between the synthesis of muscle proteins, and muscle size and function, with aging and exercise training are discussed in this review.

Restricted access

Elisabet Børsheim, Asle Aarsland and Robert R. Wolfe

This study tests the hypotheses that (a) a mixture of whey protein, amino acids (AA), and carbohydrates (CHO) stimulates net muscle protein synthesis to a greater extent than isoenergetic CHO alone after resistance exercise; and (b) that the stimulatory effect of a protein, AA, and CHO mixture will last beyond the 1 st hour after intake. Eight subjects participated in 2 trials. In one (PAAC), they ingested 77.4 g CHO, 17.5 g whey protein, and 4.9 g AA 1 hr after resistance exercise. In the other (CON), 100 g CHO was ingested instead. They received a primed constant infusion of L-[2H5]-phenylalanine, and samples from femoral artery and vein, and biopsies from vastus lateralis were obtained. The area under the curve for net uptake of phenylalanine into muscle above pre-drink value was 128 ±42 mg • leg-1 (PAAC) versus 32 ± 10 mg - leg-1 (CON) for the 3 hr after the drink (p = .04). The net protein balance response to the mixture consisted of two components, one rapid immediate response, and a smaller delayed response about 90 min after drink, whereas in CON only a small delayed response was seen. We conclude that after resistance exercise, a mixture of whey protein, AA, and CHO stimulated muscle protein synthesis to a greater extent than isoenergetic CHO alone. Further, compared to previously reported findings, the addition of protein to an AA + CHO mixture seems to extend the anabolic effect.

Restricted access

Peter A. Farrell

Skeletal muscle proteins are constantly being synthesized and degraded, and the net balance between synthesis and degradation determines the resultant muscle mass. Biochemical pathways that control protein synthesis are complex, and the following must be considered: gene transcription, mRNA splicing, and transport to the cytoplasm; specific amino acyl-tRNA, messenger (mRNA), ribosomal (rRNA) availability; amino acid availability within the cell; the hormonal milieu; rates of mRNA translation; packaging in vesicles for some types of proteins; and post-translational processing such as glycation and phosphorylation/dephosphorylation. Each of these processes is responsive to the need for greater or lesser production of new proteins, and many states such as sepsis, uncontrolled diabetes, prolonged bed-rest, aging, chronic alcohol treatment, and starvation cause marked reductions in rates of skeletal muscle protein synthesis. In contrast, acute and chronic resistance exercise cause elevations in rates of muscle protein synthesis above rates found in nondiseased rested organisms, which are normally fed. Resistance exercise may be unique in this capacity. This chapter focuses on studies that have used exercise to elucidate mechanisms that explain elevations in rates of protein synthesis. Very few studies have investigated the effects of aging on these mechanisms; however, the literature that is available is reviewed.

Restricted access

John C. Lawrence Jr.

Muscle mass is influenced by many factors including genetically programmed changes, hormonal state, level of activity, and disease processes. Ultimately, whether or not a muscle hypertrophies or atrophies is determined by a simple relationship between the rates of protein synthesis and degradation. When synthesis exceeds degradation, the muscle hypertrophies, and vice versa. In contrast to this simple relationship, the processes that control muscle protein synthesis and degradation are complex. Recently, significant progress has been made in understanding the biochemical mechanisms that control the rate of translation initiation, which is generally the limiting phase in protein synthesis.