Search Results

You are looking at 41 - 50 of 82 items for :

Clear All
Restricted access

Simon Fryer, Tabitha Dickson, Stephen Hillier, Lee Stoner, Carl Scarrott and Nick Draper

Venipuncture is expensive, invasive, and impractical for many sport-science and clinical-based settings. Salivary free cortisol is often cited as a noninvasive practical alternative. However, when cortisol concentrations exceed the corticosteroid-binding globulin (CBG) point of 500 nmol/L, a lack of agreement between salivary and venous blood cortisol has been found. Alternatively, capillary blood may present a minimally invasive, cost-effective, and practical surrogate for determining cortisol concentration.

Purpose:

The aim of this study was to determine whether cortisol concentrations sampled from capillary blood and saliva accurately reflect those found in venous blood across a large range of concentrations after intense exercise.

Methods:

Eleven healthy aerobically trained male subjects were recruited. Capillary, salivary, and venous blood samples were collected before and after (immediately and 5, 10, 15, and 20 min after) a treadmill VO2 max test.

Results:

Capillary and venous concentrations increased at a similar rate after exercise (Cohen d.14–.33), increasing up to 15 min postexercise before a decline was seen. Salivary cortisol values increased at a slower rate than venous and capillary cortisol but continued to increase 15 min postexercise (Cohen d .19–.47 and .09–.72, respectively).

Conclusions:

Capillary cortisol accurately reflects concentrations assayed from venous blood across a range of values below and above the CBG binding point. Capillary sampling provides a minimally invasive, cost-effective, practical surrogate for assessment of hypothalamic-pituitary-gland function.

Restricted access

C. Martyn Beaven, Will G. Hopkins, Kier T. Hansen, Matthew R. Wood, John B. Cronin and Timothy E. Lowe

Introduction:

Interest in the use of caffeine as an ergogenic aid has increased since the International Olympic Committee lifted the partial ban on its use. Caffeine has beneficial effects on various aspects of athletic performance, but its effects on training have been neglected.

Purpose:

To investigate the acute effect of caffeine on the exercise-associated increases in testosterone and cortisol in a double-blind crossover study.

Methods:

Twenty-four professional rugby-league players ingested caffeine doses of 0, 200, 400, and 800 mg in random order 1 hr before a resistance-exercise session. Saliva was sampled at the time of caffeine ingestion, at 15-min intervals throughout each session, and 15 and 30 min after the session. Data were log-transformed to estimate percent effects with mixed modeling, and effects were standardized to assess magnitudes.

Results:

Testosterone concentration showed a small increase of 15% (90% confidence limits, ± 19%) during exercise. Caffeine raised this concentration in a dose-dependent manner by a further small 21% (± 24%) at the highest dose. The 800-mg dose also produced a moderate 52% (± 44%) increase in cortisol. The effect of caffeine on the testosterone:cortisol ratio was a small decline (14%; ± 21%).

Conclusion:

Caffeine has some potential to benefit training outcomes via the anabolic effects of the increase in testosterone concentration, but this benefit might be counteracted by the opposing catabolic effects of the increase in cortisol and resultant decline in the testosterone:cortisol ratio.

Restricted access

Brian Cunniffe, Kevin A. Morgan, Julien S. Baker, Marco Cardinale and Bruce Davies

This study evaluated the effect of game venue and starting status on precompetitive psychophysiological measures in elite rugby union. Saliva samples were taken from players (starting XV, n = 15, and nonstarters, n = 9) on a control day and 90 min before 4 games played consecutively at home and away venues against local rivals and league leaders. Precompetition psychological states were assessed using the Competitive State Anxiety Inventory−2. The squad recorded 2 wins (home) and 2 losses (away) over the study period. Calculated effect sizes (ESs) showed higher pregame cortisol- (C) and testosterone- (T) difference values before all games than on a baseline control day (ES 0.7−1.5). Similar findings were observed for cognitive and somatic anxiety. Small between-venues C differences were observed in starting XV players (ES 0.2−0.25). Conversely, lower home T- (ES 0.95) and higher away C- (ES 0.6) difference values were observed in nonstarters. Lower T-difference values were apparent in nonstarters (vs starting XV) before home games, providing evidence of a between-groups effect (ES 0.92). Findings show an anticipatory rise in psychophysiological variables before competition. Knowledge of starting status appears a moderating factor in the magnitude of player endocrine response between home and away games.

Restricted access

Katrina D. DuBose and Andrew J. McKune

The relationship between physical activity levels, salivary cortisol, and the metabolic syndrome (MetSyn) score was examined. Twenty-three girls (8.4 ± 0.9 years) had a fasting blood draw, waist circumference and blood pressure measured, and wore an ActiGraph accelerometer for 5 days. Saliva samples were collected to measure cortisol levels. Previously established cut points estimated the minutes spent in moderate, vigorous, and moderate-to-vigorous physical activity. A continuous MetSyn score was created from blood pressure, waist circumference, high-density-lipoprotein (HDL), triglyceride, and glucose values. Correlation analyses examined associations between physical activity, cortisol, the MetSyn score, and its related components. Regression analysis examined the relationship between cortisol, the MetSyn score, and its related components adjusting for physical activity, percent body fat, and sexual maturity. Vigorous physical activity was positively related with 30 min post waking cortisol values. The MetSyn score was not related with cortisol values after controlling for confounders. In contrast, HDL was negatively related with 30 min post waking cortisol. Triglyceride was positively related with 30 min post waking cortisol and area under the curve. The MetSyn score and many of its components were not related to cortisol salivary levels even after adjusting for physical activity, body fat percentage, and sexual maturity.

Restricted access

Christian Cook, C. Martyn Beaven, Liam P. Kilduff and Scott Drawer

Introduction:

This study aimed to determine whether caffeine ingestion would increase the workload voluntarily chosen by athletes in a limited-sleep state.

Methods:

In a double-blind, crossover study, 16 professional rugby players ingested either a placebo or 4 mg/kg caffeine 1 hr before exercise. Athletes classified themselves into nondeprived (8 hr+) or sleep-deprived states (6 hr or less). Exercise comprised 4 sets of bench press, squats, and bent rows at 85% 1-repetition maximum. Athletes were asked to perform as many repetitions on each set as possible without failure. Saliva was collected before administration of placebo or caffeine and again before and immediately after exercise and assayed for testosterone and cortisol.

Results:

Sleep deprivation produced a very large decrease in total load (p = 1.98 × 10−7). Caffeine ingestion in the nondeprived state resulted in a moderate increase in total load, with a larger effect in the sleep-deprived state, resulting in total load similar to those observed in the nondeprived placebo condition. Eight of the 16 athletes were identified as caffeine responders. Baseline testosterone was higher (p < .05) and cortisol trended lower in non-sleep-deprived athletes. Changes in hormones from predose to preexercise correlated to individual workload responses to caffeine. Testosterone response to exercise increased with caffeine compared with placebo, as did cortisol response.

Conclusions:

Caffeine increased voluntary workload in professional athletes, even more so under conditions of self-reported limited sleep. Caffeine may prove worthwhile when athletes are tired, especially in those identified as responders.

Restricted access

Myosotis Massidda, Marco Scorcu and Carla M. Calò

Purpose:

The aim of the current study was to construct a genetic model with a new algorithm for predicting athletic-performance variability based on genetic variations.

Methods:

The influence of 6 polymorphisms (ACE, ACTN-3, BDKRB2, VDR-ApaI, VDR-BsmI, and VDR-FokI) on vertical jump was studied in top-level male Italian soccer players (n = 90). First, the authors calculated the traditional total genotype score and then determined the total weighting genotype score (TWGS), which accounts for the proportion of significant phenotypic variance predicted by the polymorphisms. Genomic DNA was extracted from saliva samples using a standard protocol. Genotyping was performed using polymerase chain reaction (PCR).

Results:

The results obtained from the new genetic model (TWGS) showed that only 3 polymorphisms entered the regression equation (ACTN-3, ACE, and BDKRB2), and these polymorphisms explained 17.68–24.24% of the verticaljump variance. With the weighting given to each polymorphism, it may be possible to identify a polygenic profile that more accurately explains, at least in part, the individual variance of athletic-performance traits.

Conclusions:

This model may be used to create individualized training programs based on a player’s genetic predispositions, as well as to identify athletes who need an adapted training routine to account for individual susceptibility to injury.

Restricted access

David C. Nieman, Dru A. Henson, Steven R. McAnulty, Fuxia Jin and Kendra R. Maxwell

The purpose of this study was to test the influence of 2.4 g/d fish oil n-3 polyunsaturated fatty acids (n-3 PUFA) over 6 wk on exercise performance, inflammation, and immune measures in 23 trained cyclists before and after a 3-d period of intense exercise. Participants were randomized to n-3 PUFA (n = 11; 2,000 mg eicosapentaenoic acid [EPA], 400 mg docosahexaenoic acid [DHA]) or placebo (n = 12) groups. They ingested supplements under double-blind methods for 6 wk before and during a 3-d period in which they cycled for 3 hr/d at ~57% Wmax with 10-km time trials inserted during the final 15 min of each 3-hr bout. Blood and saliva samples were collected before and after the 6-wk supplementation period, immediately after the 3-hr exercise bout on the third day, and 14 hr postexercise and analyzed for various immune-function and inflammation parameters. Supplementation with n-3 PUFA resulted in a significant increase in plasma EPA and DHA but had no effect on 10-km time-trial performance; preexercise outcome measures; exercise-induced increases in plasma cytokines, myeloperoxidase, blood total leukocytes, serum C-reactive protein, and creatine kinase; or the decrease in the salivary IgA:protein ratio. In conclusion, 6 wk supplementation with a large daily dose of n-3 PUFAs increased plasma EPA and DHA but had no effect on exercise performance or in countering measures of inflammation and immunity before or after a 3-d period of 9 hr of heavy exertion.

Restricted access

Mark Russell, Aden King, Richard. M. Bracken, Christian. J. Cook, Thibault Giroud and Liam. P. Kilduff

Purpose:

To assess the effects of different modes of morning (AM) exercise on afternoon (PM) performance and salivary hormone responses in professional rugby union players.

Methods:

On 4 occasions (randomized, crossover design), 15 professional rugby players provided AM (~8 AM) and PM (~2 PM) saliva samples before PM assessments of countermovement-jump height, reaction time, and repeated-sprint ability. Control (passive rest), weights (bench press: 5 × 10 repetitions, 75% 1-repetition maximum, 90-s intraset recovery), cycling (6 × 6-s maximal sprint cycling, 7.5% body mass load, 54-s intraset recovery), and running (6 × 40-m maximal sprints, 20-s intraset recovery) interventions preceded (~5 h) PM testing.

Results:

PM sprint performance improved (P < .05) after weights (>0.15 ± 0.19 s, >2.04% ± 2.46%) and running (>0.15 ± 0.17 s, >2.12% ± 2.22%) but not cycling (P > .05). PM jump height increased after cycling (0.012 ± 0.009 m, 2.31% ± 1.76%, P < .001) and running (0.020 ± 0.009 m, 3.90% ± 1.79%, P < .001) but not weights (P = .936). Reaction time remained unchanged between trials (P = .379). Relative to control (131 ± 21 pg/mL), PM testosterone was greater in weights (21 ± 23 pg/mL, 17% ± 18%, P = .002) and running (28 ± 26 pg/mL, 22% ± 20%, P = .001) but not cycling (P = .072). Salivary cortisol was unaffected by AM exercise (P = .540).

Conclusions:

All modes of AM exercise improved at least 1 marker of PM performance, but running appeared the most beneficial to professional rugby union players. A rationale therefore exists for preceding PM competition with AM exercise.

Restricted access

Mette Hansen, Jens Bangsbo, Jørgen Jensen, Bo Martin Bibby and Klavs Madsen

This trial aimed to examine the effect of whey protein hydrolysate intake before and after exercise sessions on endurance performance and recovery in elite orienteers during a training camp. Eighteen elite orienteers participated in a randomized controlled intervention trial during a 1-week training camp (13 exercise sessions). Half of the runners (PRO-CHO) ingested a protein drink before (0.3 g kg−1) and a protein-carbohydrate drink after (0.3 g protein kg−1 and 1 g carbohydrate kg−1) each exercise session. The others ingested energy and timematched carbohydrate drinks (CHO). A 4-km run-test with 20 control points was performed before and on the last day of the intervention. Blood and saliva were obtained in the mornings, before and after run-tests, and after the last training session. During the intervention, questionnaires were fulfilled regarding psychological sense of performance capacity and motivation. PRO-CHO and not CHO improved performance in the 4-km run-test (interaction p < .05). An increase in serum creatine kinase was observed during the week, which was greater in CHO than PRO-CHO (interactionp < .01). Lactate dehydrogenase (p < .001) and cortisol (p = .057) increased during the week, but the change did not differ between groups. Reduction in sense of performance capacity during the intervention was greater in CHO (p < .05) than PRO-CHO. In conclusion, ingestion of whey protein hydrolysate before and after each exercise session improves performance and reduces markers of muscle damage during a strenuous 1-week training camp. The results indicate that protein supplementation in conjunction with each exercise session facilitates the recovery from strenuous training in elite orienteers.

Restricted access

Stuart J. Cormack, Robert U. Newton, Michael R. McGuigan and Prue Cormie

Purpose:

To examine variations in neuromuscular and hormonal status and their relationship to performance throughout a season of elite Australian Rules Football (ARF).

Methods:

Fifteen elite ARF players performed a single jump (CMJ1) and 5 repeated countermovement jumps (CMJ5), and provided saliva samples for the analysis of cortisol (C) and testosterone (T) before the season commenced (Pre) and during the 22-match season. Magnitudes of effects were reported with the effect size (ES) statistic. Correlations were performed to analyze relationships between assessment variables and match time, training load, and performance.

Results:

CMJ1Flight time:Contraction time was substantially reduced on 60% of measurement occasions. Magnitudes of change compared with Pre ranged from 1.0 ± 7.4% (ES 0.04 ± 0.29) to −17.1 ± 21.8% (ES −0.77 ± 0.81). Cortisol was substantially lower (up to −40 ± 14.1%, ES of −2.17 ± 0.56) than Pre in all but one comparison. Testosterone response was varied, whereas T:C increased substantially on 70% of occasions, with increases to 92.7 ± 27.8% (ES 2.03 ± 0.76). CMJ1Flight time:Contraction time (r = .24 ± 0.13) and C displayed (r = −0.16 ± 0.1) small correlations with performance.

Conclusion:

The response of CMJ1Flight time:Contraction time suggests periods of neuromuscular fatigue. Change in T:C indicates subjects were unlikely to have been in a catabolic state during the season. Increase in C compared with Pre had a small negative correlation with performance. Both CMJ1Flight time:Contraction time and C may be useful variables for monitoring responses to training and competition in elite ARF athletes.