Search Results

You are looking at 41 - 50 of 215 items for :

  • "strength testing" x
Clear All
Restricted access

Robert van Cingel, Gertjan Kleinrensink, Rob Stoeckart, Geert Aufdemkampe, Rob de Bie and Harm Kuipers

Objective:

To determine concentric shoulder external-internal rotator strength, dominant and non-dominant shoulder differences and agonist/antagonist ratios.

Design:

A transversal study of isokinetic dynamometry of healthy shoulders, 95% confidence intervals are presented.

Participants:

35 asymptomatic elite, male volleyball players.

Measurements:

Peak torque normalized for body weight was recorded at 60, 180, and 300°/sec. with a Cybex 6000 dynamometer.

Results:

(1) internal rotators were significantly stronger than external rotators of the same shoulder; (2) internal rotators of the dominant arm were significantly stronger than of the non-dominant arm; (3) no difference existed between external rotators of the dominant and the non-dominant arm; (4) external–internal rotator ratios of the dominant arm were significantly lower than of the non-dominant arm; and (5) no differences were found between the ratios of each arm separately.

Conclusions:

Data presented are important for interpreting isokinetic shoulder rotator strength tests in elite volleyball players and could be relevant in rehabilitation and prevention of shoulder injuries.

Restricted access

Irineu Loturco, Lucas A. Pereira, Ciro Winckler, Weverton L. Santos, Ronaldo Kobal and Michael McGuigan

Purpose: To examine the relationships between different loading intensities and movement velocities in the bench-press exercise (BP) in Paralympic powerlifters. Methods: A total of 17 national Paralympic powerlifters performed maximum dynamic strength tests to determine their BP 1-repetition maximum (1RM) in a Smith-machine device. A linear position transducer was used to measure movement velocity over a comprehensive range of loads. Linear-regression analysis was performed to establish the relationships between the different bar velocities and the distinct percentages of 1RM. Results: Overall, the correlations between bar velocities and %1RM were strong over the entire range of loads (R 2 .80–.91), but the precision of the predictive equations (expressed as mean differences [%] between actual and predicted 1RM values) were higher at heavier loading intensities (∼20% for loads ≤70% 1RM and ∼5% for loads ≥70% 1RM). In addition, it seems that these very strong athletes (eg, 1RM relative in the BP = 2.22 [0.36] kg·kg−1, for male participants) perform BP 1RM assessments at lower velocities than those previously reported in the literature. Conclusions: The load–velocity relationship was strong and consistent in Paralympic powerlifters, especially at higher loads (≥70% 1RM). Therefore, Paralympic coaches can use the predictive equations and the reference values provided here to determine and monitor the BP loading intensity in national Paralympic powerlifters.

Restricted access

Joe Nocera, Mack Rubley, William Holcomb and Mark Guadagnoli

Context:

There is limited information on the effects of throwing on shoulder proprioception and strength.

Objective:

Examine shoulder proprioception and strength following throwing.

Design:

2x3 mixed-subject design.

Setting:

Research laboratory and outdoor facility.

Participants:

23 male college students (age = 22 ± 2.9yr, ht = 178 ± 11.3cm, wt = 72 ± 7.7kg, 22 right-handed 1 left-handed).

Intervention:

Subjects were pretested for proprioception, measured by active reproduction of passive positioning (ARPP). Strength was quantified using 1RM and an average peak torque at 120º/sec for internal and external shoulder rotation. Following pretesting, subjects (excluding control) completed 75 throws at 75% maximum immediately followed by posttesting.

Main Outcome Measures:

Pre and post ARPP absolute error and strength changes.

Results:

Significant difference in the pre and posttest ARPP values for throwing groups but no difference for the control group. There was no significant difference from pre to post on the strength tests for any groups.

Conclusion:

Results indicate that repetitive throwing affects proprioception while not affecting strength.

Restricted access

Khalid S. Almuzaini

The main purpose of the present study was to determine isokinetic strength and endurance, isometric strength, and anaerobic power for untrained healthy Saudi children and adolescents. The secondary purpose was to evaluate the effects of age in relation to anthropometric characteristics on strength and anaerobic performances. Forty-four (untrained) 11- to 19-year-old boys were grouped by age: 11-13 years, 14–16 years, and 17–19 years. All participants underwent anthropometric measurements, a flexibility test, a vertical jump test, a grip strength test, isokinetic strength measurements (Cybex Norm), and a Wingate anaerobic power test. Oneway ANOVA results indicated age-related increases in muscle strength and power. High correlation coefficients that were found among age and strength and anaerobic power indices almost disappeared when fat-free mass (FFM) was controlled for, indicating that the amount of variance in these indices that was explained by age is mostly shared by FFM. In addition, stepwise linear regression models indicated that FFM was the main predictor of strength and power performances. Thus, FFM was the best scaling variable for body size when comparing these age groups of Saudis. Until wide-range normal representative values for isokinetic strength and anaerobic power for Saudi children and adolescents are available, the present study’s results can serve as a reference for these indices.

Restricted access

Jenni Kulmala, Tiia Ngandu, Satu Pajala, Jenni Lehtisalo, Esko Levälahti, Riitta Antikainen, Tiina Laatikainen, Heikki Oksa, Markku Peltonen, Rainer Rauramaa, Hilkka Soininen, Timo Strandberg, Jaakko Tuomilehto and Miia Kivipelto

Background:

Physical activity (PA) has beneficial effects on older age physical functioning, but longitudinal studies with follow-ups extending up to decades are few. We investigated the association between leisure-time PA (LTPA) and occupational PA (OPA) from early to late adulthood in relation to later life performance-based physical functioning.

Methods:

The study involved 1260 people aged 60 to 79 years who took part in assessments of physical functioning (Short Physical Performance Battery [SPPB] test, 10-m maximal walking test, and grip strength test). Participants’ data on earlier life LTPA/OPA (age range 25 to 74 years) were received from the previous studies (average follow-up 13.4 years). Logistic, linear, and censored regression models were used to assess the associations between LTPA/OPA earlier in life and subsequent physical functioning.

Results:

A high level of LTPA earlier in life was associated with a lower risk of having difficulties on the SPPB test (odds ratio [OR]: 0.37; 95% confidence interval [CI], 0.24–0.58) and especially on the chair rise test (OR: 0.42; 95% CI, 0.27–0.64) in old age. Heavy manual work predicted difficulties on SPPB (OR: 1.91; 95% CI, 1.22–2.98) and the chair rise test (OR: 1.75; 95% CI, 1.14–2.69) and poorer walking speed (β = .10, P = .005).

Conclusions:

This study highlights the importance of LTPA on later life functioning, but also indicates the inverse effects that may be caused by heavy manual work.

Restricted access

Christina Carr, John J. McMahon and Paul Comfort

Purpose:

Previous research has investigated changes in athletes’ strength, power, and speed performances across the competitive season of many sports, although this has not been explored in cricketers. The aim of this study was to investigate changes in lower-body strength and jump and sprint performances across an English county cricket season.

Methods:

Male cricketers (N = 12; age 24.4 ± 2.3 y, body mass 84.3 ± 9.9 kg, height 184.1 ± 8.1 cm) performed countermovement jumps (CMJs) and 20-m sprints on 4 separate occasions and back-squat strength testing on 3 separate occasions across a competitive season.

Results:

Both absolute (12.9%, P = .005, effect size [ES] = 0.53) and relative lower-body strength (15.8%, P = .004, ES = 0.69) and CMJ height (5.3%, P = .037, ES = 0.42) improved significantly over the preseason training period, although no significant change (1.7%, P > .05) in sprint performance was observed. In contrast, absolute (14.3%, P = .001, ES = 0.72) and relative strength (15.0%, P = .001, ES = 0.77), CMJ height (4.2%, P = .023, ES = 0.40), and sprint performance (3.8%, P = .012, ES = 0.94) declined significantly across the season.

Conclusions:

The results of this study show that neither the demands of the competitive cricket season nor current in-season training practices provide a sufficient stimulus to maintain strength, jump, and sprint performances in these cricketers. Therefore, coaches should implement a more-frequent, higher-load strength-training program across the competitive cricket season.

Restricted access

Michael P. Corcoran, Miriam E. Nelson, Jennifer M. Sacheck, Kieran F. Reid, Dylan Kirn, Roger A. Fielding, Kenneth K.H. Chui and Sara C. Folta

This cluster-randomized trial was designed to determine the efficacy of a 6-month exercise-nutritional supplement program (ENP) on physical function and nutritional status for older adults and the feasibility of implementing this program in a senior living setting. Twenty senior-living facilities were randomized to either a 3 day per week group-based ENP led by a trained facility staff member or a health education program (SAP). Participants (N = 121) completed a short physical performance battery, 400-m walk, handgrip strength test, and mini-nutrition assessment. 25-hydroxyvitamin D [25(OH)D], insulin-like growth-factor 1 (IGF-1), and activity level were also measured. The ENP did not significantly improve physical function or nutritional status compared with the SAP. Compared with baseline, participants in the ENP engaged in 39 min less physical activity per week at 6 months. Several facility characteristics hindered implementation of the ENP. This study highlights the complexity of implementing an evidence-based program in a field setting.

Restricted access

Stefan C. Garcia, Jeffrey J. Dueweke and Christopher L. Mendias

Context: Manual isometric muscle testing is a common clinical technique used to assess muscle strength. To provide the most accurate data for the test, the muscle being assessed should be at a length in which it produces maximum force. However, there is tremendous variability in the recommended positions and joint angles used to conduct these tests, with few apparent objective data used to position the joint such that muscle-force production is greatest. Objective: To use validated anatomically and biomechanically based musculoskeletal models to identify the optimal joint positions in which to perform manual isometric testing. Design: In silico analysis. Main outcome measure: The joint position which produces maximum muscle force for 49 major limb and trunk muscles. Results: The optimal joint position for performing a manual isometric test was determined. Conclusion: Using objective anatomical models that take into account the force-length properties of muscles, the authors identified joint positions in which net muscle-force production was predicted to be maximal. This data can help health care providers to better assess muscle function when manual isometric strength tests are performed.

Restricted access

Christopher A. Bailey, Kimitake Sato, Angus Burnett and Michael H. Stone

The purpose of this investigation was to determine the existence of bilateral strength and force-production asymmetry and evaluate possible differences based on sex, as well as strength level. Asymmetry was assessed during weight-distribution (WtD) testing, unloaded and lightly loaded static- (SJ) and countermovement-jump (CMJ) testing, and isometric midthigh-pull (IMTP) strength testing. Subjects included 63 athletes (31 male, 32 female) for WtD, SJ, and CMJ tests, while 129 athletes (64 male, 65 female) participated in IMTP testing. Independent-samples t tests were used to determine possible differences in asymmetry magnitude between males and females, as well as between strong and weak athletes. Cohen d effect-size (ES) estimates were also used to estimate difference magnitudes. Statistically different asymmetry levels with moderate to strong ESs were seen between males and females in WtD, 0-kg SJ (peak force [PF]), 20-kg SJ (peak power [PP]), 0-kg CMJ (PF, PP, net impulse), and 20-kg CMJ (PF), but no statistical differences were observed in IMTP variables. Dividing the sample into strong and weak groups produced statistically significant differences with strong ES estimates in IMTP PF and rate of force development, and many ESs in jump symmetry variables increased. The results of this investigation indicate that females may be more prone to producing forces asymmetrically than males during WtD and jumping tasks. Similarly, weaker athletes displayed more asymmetry than stronger athletes. This may indicate that absolute strength may play a larger role in influencing asymmetry magnitude than sex.

Restricted access

Taina Rantanen, Pertti Era, Markku Kauppinen and Eino Heikkinen

This study analyzes the associations of socioeconomic status (SES), health, and physical activity with maximal isometric strength in 75-year-old men (n = 104) and women (n = 191). Maximal isometric strength was measured with dynamometers; the forces were adjusted using body weight. The maximal forces for women varied from 66% (trunk flexion) to 73% (knee extension) of those of the men. SES was not associated with muscle force. For men the trunk forces and elbow flexion force correlated negatively with the number of chronic diseases, index of musculoskeletal pain, and self-rated health. For women all the strength test results correlated with self-rated health; the other health indicators showed significant correlation with trunk extension force only. For both sexes the physically more active exhibited greater strength. The index of musculoskeletal symptoms explained the variance on trunk force factor in both sexes. It was concluded that a higher level of everyday physical activity and good values in the state-of-health indicators were the most important variables explaining greater strength among the elderly.